




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四平市重點中學2025年教研聯合體高考模擬試卷(一)數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數,若,則的值為()A.1 B. C. D.2.等比數列若則()A.±6 B.6 C.-6 D.3.已知向量,,當時,()A. B. C. D.4.已知函數.若存在實數,且,使得,則實數a的取值范圍為()A. B. C. D.5.要排出高三某班一天中,語文、數學、英語各節,自習課節的功課表,其中上午節,下午節,若要求節語文課必須相鄰且節數學課也必須相鄰(注意:上午第五節和下午第一節不算相鄰),則不同的排法種數是()A. B. C. D.6.在區間上隨機取一個實數,使直線與圓相交的概率為()A. B. C. D.7.一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則這個幾何體的體積為()A. B. C. D.8.已知等差數列{an},則“a2>a1”是“數列{an}為單調遞增數列”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件9.已知函數,若曲線在點處的切線方程為,則實數的取值為()A.-2 B.-1 C.1 D.210.已知集合的所有三個元素的子集記為.記為集合中的最大元素,則()A. B. C. D.11.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()12.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.若橢圓:的一個焦點坐標為,則的長軸長為_______.14.設,若函數有大于零的極值點,則實數的取值范圍是_____15.某次足球比賽中,,,,四支球隊進入了半決賽.半決賽中,對陣,對陣,獲勝的兩隊進入決賽爭奪冠軍,失利的兩隊爭奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—則隊獲得冠軍的概率為______.16.已知函數為奇函數,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若,證明:當時,;(2)若在只有一個零點,求的值.18.(12分)在平面直角坐標系中,已知橢圓:()的左、右焦點分別為、,且點、與橢圓的上頂點構成邊長為2的等邊三角形.(1)求橢圓的方程;(2)已知直線與橢圓相切于點,且分別與直線和直線相交于點、.試判斷是否為定值,并說明理由.19.(12分)2019年春節期間,某超市準備舉辦一次有獎促銷活動,若顧客一次消費達到400元則可參加一次抽獎活動,超市設計了兩種抽獎方案.方案一:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.方案二:一個不透明的盒子中裝有30個質地均勻且大小相同的小球,其中10個紅球,20個白球,攪拌均勻后,顧客從中隨機抽取一個球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎,且顧客有放回地抽取3次.(1)現有兩位顧客均獲得抽獎機會,且都按方案一抽獎,試求這兩位顧客均獲得180元返金券的概率;(2)若某顧客獲得抽獎機會.①試分別計算他選擇兩種抽獎方案最終獲得返金券的數學期望;②為了吸引顧客消費,讓顧客獲得更多金額的返金券,該超市應選擇哪一種抽獎方案進行促銷活動?20.(12分)如圖,四棱錐中,底面為直角梯形,,,,,在銳角中,E是邊PD上一點,且.(1)求證:平面ACE;(2)當PA的長為何值時,AC與平面PCD所成的角為?21.(12分)設函數,.(1)求函數的極值;(2)對任意,都有,求實數a的取值范圍.22.(10分)某保險公司給年齡在歲的民眾提供某種疾病的一年期醫療保險,現從名參保人員中隨機抽取名作為樣本進行分析,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應交納的保費如下表所示.據統計,該公司每年為這一萬名參保人員支出的各種費用為一百萬元.年齡(單位:歲)保費(單位:元)(1)用樣本的頻率分布估計總體分布,為使公司不虧本,求精確到整數時的最小值;(2)經調查,年齡在之間的老人每人中有人患該項疾病(以此頻率作為概率).該病的治療費為元,如果參保,保險公司補貼治療費元.某老人年齡歲,若購買該項保險(取中的).針對此疾病所支付的費用為元;若沒有購買該項保險,針對此疾病所支付的費用為元.試比較和的期望值大小,并判斷該老人購買此項保險是否劃算?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】由復數模的定義可得:,求解關于實數的方程可得:.本題選擇D選項.2.B【解析】
根據等比中項性質代入可得解,由等比數列項的性質確定值即可.【詳解】由等比數列中等比中項性質可知,,所以,而由等比數列性質可知奇數項符號相同,所以,故選:B.本題考查了等比數列中等比中項的簡單應用,注意項的符號特征,屬于基礎題.3.A【解析】
根據向量的坐標運算,求出,,即可求解.【詳解】,.故選:A.本題考查向量的坐標運算、誘導公式、二倍角公式、同角間的三角函數關系,屬于中檔題.4.D【解析】
首先對函數求導,利用導數的符號分析函數的單調性和函數的極值,根據題意,列出參數所滿足的不等關系,求得結果.【詳解】,令,得,.其單調性及極值情況如下:x0+0_0+極大值極小值若存在,使得,則(如圖1)或(如圖2).(圖1)(圖2)于是可得,故選:D.該題考查的是有關根據函數值的關系求參數的取值范圍的問題,涉及到的知識點有利用導數研究函數的單調性與極值,畫出圖象數形結合,屬于較難題目.5.C【解析】
根據題意,分兩種情況進行討論:①語文和數學都安排在上午;②語文和數學一個安排在上午,一個安排在下午.分別求出每一種情況的安排方法數目,由分類加法計數原理可得答案.【詳解】根據題意,分兩種情況進行討論:①語文和數學都安排在上午,要求節語文課必須相鄰且節數學課也必須相鄰,將節語文課和節數學課分別捆綁,然后在剩余節課中選節到上午,由于節英語課不加以區分,此時,排法種數為種;②語文和數學都一個安排在上午,一個安排在下午.語文和數學一個安排在上午,一個安排在下午,但節語文課不加以區分,節數學課不加以區分,節英語課也不加以區分,此時,排法種數為種.綜上所述,共有種不同的排法.故選:C.本題考查排列、組合的應用,涉及分類計數原理的應用,屬于中等題.6.D【解析】
利用直線與圓相交求出實數的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.本題考查幾何概型概率的計算,同時也考查了利用直線與圓相交求參數,考查計算能力,屬于基礎題.7.C【解析】
由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【詳解】由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.本題考查的知識點是由三視圖求幾何體的體積,解決本題的關鍵是得到該幾何體的形狀.8.C【解析】試題分析:根據充分條件和必要條件的定義進行判斷即可.解:在等差數列{an}中,若a2>a1,則d>0,即數列{an}為單調遞增數列,若數列{an}為單調遞增數列,則a2>a1,成立,即“a2>a1”是“數列{an}為單調遞增數列”充分必要條件,故選C.考點:必要條件、充分條件與充要條件的判斷.9.B【解析】
求出函數的導數,利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.本題考查函數的導數的幾何意義,切線方程的求法,考查計算能力.10.B【解析】
分類討論,分別求出最大元素為3,4,5,6的三個元素子集的個數,即可得解.【詳解】集合含有個元素的子集共有,所以.在集合中:最大元素為的集合有個;最大元素為的集合有;最大元素為的集合有;最大元素為的集合有;所以.故選:.此題考查集合相關的新定義問題,其本質在于弄清計數原理,分類討論,分別求解.11.D【解析】
由題意利用兩個向量坐標形式的運算法則,兩個向量平行、垂直的性質,得出結論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標對應不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標對應不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.本題主要考查兩個向量坐標形式的運算,兩個向量平行、垂直的性質,屬于基礎題.12.A【解析】
設,用表示出,求出的值即可得出答案.【詳解】設由,,.故選:A本題考查了向量加法、減法以及數乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由焦點坐標得從而可求出,繼而得到橢圓的方程,即可求出長軸長.【詳解】解:因為一個焦點坐標為,則,即,解得或由表示的是橢圓,則,所以,則橢圓方程為所以.故答案為:.本題考查了橢圓的標準方程,考查了橢圓的幾何意義.本題的易錯點是忽略,從而未對的兩個值進行取舍.14.【解析】
先求導數,求解導數為零的根,結合根的分布求解.【詳解】因為,所以,令得,因為函數有大于0的極值點,所以,即.本題主要考查利用導數研究函數的極值點問題,極值點為導數的變號零點,側重考查轉化化歸思想.15.0.18【解析】
根據表中信息,可得勝C的概率;分類討論B或D進入決賽,再計算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進入決賽,B勝D的概率為,則A勝B的概率為;若D進入決賽,D勝B的概率為,則A勝D的概率為;由相應的概率公式知,則A獲得冠軍的概率為.故答案為:0.18本題考查了獨立事件的概率應用,互斥事件的概率求法,屬于基礎題.16.【解析】
利用奇函數的定義得出,結合對數的運算性質可求得實數的值.【詳解】由于函數為奇函數,則,即,,整理得,解得.當時,真數,不合乎題意;當時,,解不等式,解得或,此時函數的定義域為,定義域關于原點對稱,合乎題意.綜上所述,.故答案為:.本題考查利用函數的奇偶性求參數,考查了函數奇偶性的定義和對數運算性質的應用,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)【解析】
分析:(1)先構造函數,再求導函數,根據導函數不大于零得函數單調遞減,最后根據單調性證得不等式;(2)研究零點,等價研究的零點,先求導數:,這里產生兩個討論點,一個是a與零,一個是x與2,當時,,沒有零點;當時,先減后增,從而確定只有一個零點的必要條件,再利用零點存在定理確定條件的充分性,即得a的值.詳解:(1)當時,等價于.設函數,則.當時,,所以在單調遞減.而,故當時,,即.(2)設函數.在只有一個零點當且僅當在只有一個零點.(i)當時,,沒有零點;(ii)當時,.當時,;當時,.所以在單調遞減,在單調遞增.故是在的最小值.①若,即,在沒有零點;②若,即,在只有一個零點;③若,即,由于,所以在有一個零點,由(1)知,當時,,所以.故在有一個零點,因此在有兩個零點.綜上,在只有一個零點時,.點睛:利用函數零點的情況求參數值或取值范圍的方法(1)利用零點存在的判定定理構建不等式求解.(2)分離參數后轉化為函數的值域(最值)問題求解.(3)轉化為兩熟悉的函數圖象的上、下關系問題,從而構建不等式求解.18.(1)(2)為定值.【解析】
(1)根據題意,得出,從而得出橢圓的標準方程.(2)根據題意設直線方程:,因為直線與橢圓相切,這有一個交點,聯立直線與橢圓方程得,則,解得①把和代入,得和,,的表達式,比即可得出為定值.【詳解】解:(1)依題意,,,.所以橢圓的標準方程為.(2)為定值.①因為直線分別與直線和直線相交,所以,直線一定存在斜率.②設直線:,由得,由,得.①把代入,得,把代入,得,又因為,所以,,②由①式,得,③把③式代入②式,得,,即為定值.本題考查橢圓的定義、方程、和性質,主要考查橢圓方程的運用,考查橢圓的定值問題,考查計算能力和轉化思想,是中檔題.19.(1)(2)①②第一種抽獎方案.【解析】
(1)方案一中每一次摸到紅球的概率為,每名顧客有放回的抽3次獲180元返金劵的概率為,根據相互獨立事件的概率可知兩顧客都獲得180元返金劵的概率(2)①分別計算方案一,方案二顧客獲返金卷的期望,方案一列出分布列計算即可,方案二根據二項分布計算期望即可②根據①得出結論.【詳解】(1)選擇方案一,則每一次摸到紅球的概率為設“每位顧客獲得180元返金劵”為事件A,則所以兩位顧客均獲得180元返金劵的概率(2)①若選擇抽獎方案一,則每一次摸到紅球的概率為,每一次摸到白球的概率為.設獲得返金劵金額為元,則可能的取值為60,100,140,180.則;;;.所以選擇抽獎方案一,該顧客獲得返金劵金額的數學期望為(元)若選擇抽獎方案二,設三次摸球的過程中,摸到紅球的次數為,最終獲得返金劵的金額為元,則,故所以選擇抽獎方案二,該顧客獲得返金劵金額的數學期望為(元).②即,所以該超市應選擇第一種抽獎方案本題主要考查了古典概型,相互獨立事件的概率,二項分布,期望,及概率知識在實際問題中的應用,屬于中檔題.20.(1)證明見解析;(2)當時,AC與平面PCD所成的角為.【解析】
(1)連接交于,由相似三角形可得,結合得出,故而平面;(2)過作,可證平面,根據計算,得出的大小,再計算的長.【詳解】(1)證明:連接BD交AC于點O,連接OE,,,又平面ACE,平面ACE,平面ACE.(2),,平面PAD作,F為垂足,連接CF平面PAD,平面PAD.,有,,平面就是AC與平面PCD所成的角,,,,,,時,AC與平面PCD所成的角為.本題考查了線面平行的判定,線面垂直的判定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國三足式袋卸料離心機數據監測研究報告
- 深度解析教育科技行業未來發展方向
- 教育機構如何利用游戲化平臺提高教學效果
- 企業培訓中多媒體技術的應用與創新-以智慧教室為例
- 新版培訓課件模板圖片
- 碧桂園張家港拓客內部培訓89
- 全民健身設施補短板工程實施方案在城市老舊小區健身設施改造中的應用研究
- 全球鈾礦資源市場前景與2025年核能產業綠色低碳發展戰略報告
- 公交優先戰略在2025年城市交通擁堵治理中的可持續發展報告
- Carpetimycin-B-生命科學試劑-MCE
- 板式換熱器、半容積式換熱器換熱器面積計算表(自動計算)
- 直流屏檢修作業指導書
- 冷鐓機 質量要求技術條件
- 《全國統一安裝工程預算定額》工程量計算規則
- translated-NCCN臨床實踐指南:非小細胞肺癌(中文版2022.V5)
- GB/T 8312-2002茶咖啡堿測定
- 通信線路工程施工組織設計方案【實用文檔】doc
- 護士注冊健康體檢表下載【可直接打印版本】
- 預計財務報表編制及分析課件
- Q∕SY 1347-2010 石油化工蒸汽透平式壓縮機組節能監測方法
- 西門子順序功能圖語言S7-Graph的應用
評論
0/150
提交評論