山西傳媒學(xué)院《數(shù)據(jù)倉庫與數(shù)據(jù)挖掘》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
山西傳媒學(xué)院《數(shù)據(jù)倉庫與數(shù)據(jù)挖掘》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
山西傳媒學(xué)院《數(shù)據(jù)倉庫與數(shù)據(jù)挖掘》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
山西傳媒學(xué)院《數(shù)據(jù)倉庫與數(shù)據(jù)挖掘》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
山西傳媒學(xué)院《數(shù)據(jù)倉庫與數(shù)據(jù)挖掘》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁山西傳媒學(xué)院《數(shù)據(jù)倉庫與數(shù)據(jù)挖掘》

2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)庫設(shè)計(jì)中,若要存儲學(xué)生的課程成績,以下哪種數(shù)據(jù)類型較為合適?()A.整數(shù)型B.浮點(diǎn)型C.字符型D.日期型2、在數(shù)據(jù)分析中,以下哪種抽樣方法能夠保證樣本對總體具有較好的代表性,同時又能降低抽樣誤差?()A.簡單隨機(jī)抽樣B.分層抽樣C.整群抽樣D.系統(tǒng)抽樣3、在進(jìn)行數(shù)據(jù)抽樣時,需要根據(jù)不同的目的選擇合適的抽樣方法。假設(shè)要對一個大型電商平臺的用戶購買行為數(shù)據(jù)進(jìn)行抽樣,以估計(jì)總體的平均消費(fèi)金額,同時希望抽樣結(jié)果具有較好的代表性。以下哪種抽樣方法可能是最合適的?()A.簡單隨機(jī)抽樣B.分層抽樣C.系統(tǒng)抽樣D.整群抽樣4、在數(shù)據(jù)分析中,數(shù)據(jù)倉庫的性能優(yōu)化是一個重要的問題。以下關(guān)于數(shù)據(jù)倉庫性能優(yōu)化的描述中,錯誤的是?()A.數(shù)據(jù)倉庫性能優(yōu)化可以提高數(shù)據(jù)查詢和分析的效率B.數(shù)據(jù)倉庫性能優(yōu)化可以通過優(yōu)化數(shù)據(jù)存儲結(jié)構(gòu)、索引設(shè)計(jì)和查詢語句等方法來實(shí)現(xiàn)C.數(shù)據(jù)倉庫性能優(yōu)化需要考慮數(shù)據(jù)的規(guī)模、復(fù)雜度和使用頻率等因素D.數(shù)據(jù)倉庫性能優(yōu)化只需要關(guān)注硬件設(shè)備的升級和擴(kuò)展,無需考慮軟件方面的優(yōu)化5、在進(jìn)行數(shù)據(jù)預(yù)處理時,數(shù)據(jù)標(biāo)準(zhǔn)化或歸一化是常見的操作。假設(shè)要對一組包含不同量綱的特征數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化,以下哪種方法可能是最常用的?()A.最小-最大標(biāo)準(zhǔn)化B.Z-score標(biāo)準(zhǔn)化C.小數(shù)定標(biāo)標(biāo)準(zhǔn)化D.以上方法使用頻率相同6、在進(jìn)行數(shù)據(jù)探索性分析時,以下關(guān)于發(fā)現(xiàn)數(shù)據(jù)中的異常值的方法,哪一項(xiàng)是最常用的?()A.計(jì)算數(shù)據(jù)的均值和標(biāo)準(zhǔn)差,超出一定范圍的值視為異常值B.繪制箱線圖,觀察超出箱體范圍的值C.對數(shù)據(jù)進(jìn)行排序,查看兩端的值D.隨機(jī)抽取部分?jǐn)?shù)據(jù)進(jìn)行檢查7、在進(jìn)行數(shù)據(jù)分析時,如果需要對多個變量進(jìn)行主成分分析,以下哪個軟件或庫提供了較為方便的實(shí)現(xiàn)?()A.ExcelB.SPSSC.Python的sklearn庫D.以上都是8、數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量問題會影響分析結(jié)果的準(zhǔn)確性和可靠性。以下關(guān)于數(shù)據(jù)質(zhì)量的說法中,錯誤的是?()A.數(shù)據(jù)質(zhì)量包括準(zhǔn)確性、完整性、一致性、時效性等多個方面B.數(shù)據(jù)質(zhì)量問題可以通過數(shù)據(jù)清洗、驗(yàn)證和監(jiān)控等方法來解決C.提高數(shù)據(jù)質(zhì)量需要從數(shù)據(jù)的采集、存儲、處理等各個環(huán)節(jié)入手D.一旦數(shù)據(jù)進(jìn)入數(shù)據(jù)倉庫,就不需要再關(guān)注數(shù)據(jù)質(zhì)量問題了9、當(dāng)分析兩個變量之間的關(guān)系時,如果散點(diǎn)圖呈現(xiàn)出非線性的趨勢,以下哪種方法可以更好地?cái)M合這種關(guān)系?()A.線性回歸B.多項(xiàng)式回歸C.邏輯回歸D.嶺回歸10、回歸分析用于建立變量之間的定量關(guān)系模型。假設(shè)要建立房價(jià)與房屋面積、地理位置等因素之間的回歸模型,以下關(guān)于回歸分析的描述,哪一項(xiàng)是不正確的?()A.線性回歸是一種常見的回歸方法,但對于非線性關(guān)系可能不適用B.多重共線性可能會導(dǎo)致回歸模型的參數(shù)估計(jì)不準(zhǔn)確,需要進(jìn)行檢測和處理C.回歸模型的擬合優(yōu)度可以用R平方值來衡量,R平方值越接近1,模型擬合效果越好D.一旦建立了回歸模型,就不需要再對模型進(jìn)行評估和改進(jìn),可以直接用于預(yù)測11、在數(shù)據(jù)分析中,因果推斷用于確定變量之間的因果關(guān)系。假設(shè)要研究廣告投入與銷售額之間的因果關(guān)系,以下關(guān)于因果推斷的描述,哪一項(xiàng)是不正確的?()A.隨機(jī)對照實(shí)驗(yàn)是確定因果關(guān)系的黃金標(biāo)準(zhǔn),但在實(shí)際中可能難以實(shí)施B.觀察性研究可以通過控制混雜因素來推斷因果關(guān)系,但存在一定的局限性C.相關(guān)性強(qiáng)就意味著存在因果關(guān)系,可以直接根據(jù)相關(guān)性得出因果結(jié)論D.可以使用工具變量、雙重差分等方法來解決因果推斷中的內(nèi)生性問題12、對于數(shù)據(jù)分析中的數(shù)據(jù)融合,假設(shè)要整合來自多個數(shù)據(jù)源的數(shù)據(jù),這些數(shù)據(jù)源的數(shù)據(jù)格式、字段和含義可能不同。以下哪種數(shù)據(jù)融合方法可能更有助于實(shí)現(xiàn)數(shù)據(jù)的一致性和可用性?()A.基于規(guī)則的融合,制定明確的融合規(guī)則B.基于模型的融合,利用機(jī)器學(xué)習(xí)算法C.手動整合數(shù)據(jù),逐個處理D.不進(jìn)行數(shù)據(jù)融合,分別分析各個數(shù)據(jù)源的數(shù)據(jù)13、假設(shè)要分析一個電商平臺的用戶評論數(shù)據(jù),以提取用戶的意見和情感傾向。以下哪種自然語言處理技術(shù)和方法可能是關(guān)鍵的?()A.詞袋模型B.情感分析C.命名實(shí)體識別D.以上都是14、在進(jìn)行數(shù)據(jù)可視化時,若要展示數(shù)據(jù)的層次結(jié)構(gòu),以下哪種圖表較為合適?()A.樹形圖B.旭日圖C.和弦圖D.以上都是15、在進(jìn)行回歸分析時,如果殘差不滿足正態(tài)分布,可能會對模型產(chǎn)生什么影響?()A.影響模型的準(zhǔn)確性B.導(dǎo)致系數(shù)估計(jì)有偏差C.模型的預(yù)測能力下降D.以上都是16、在數(shù)據(jù)庫設(shè)計(jì)中,以下哪個原則有助于提高數(shù)據(jù)庫的性能和可擴(kuò)展性?()A.規(guī)范化B.反規(guī)范化C.減少冗余D.增加索引17、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘是一種高級的技術(shù)。以下關(guān)于數(shù)據(jù)挖掘的描述中,錯誤的是?()A.數(shù)據(jù)挖掘可以從大量的數(shù)據(jù)中發(fā)現(xiàn)隱藏的模式和規(guī)律B.數(shù)據(jù)挖掘可以使用機(jī)器學(xué)習(xí)算法進(jìn)行數(shù)據(jù)的分類、聚類和預(yù)測C.數(shù)據(jù)挖掘需要專業(yè)的技術(shù)和知識,對于普通用戶來說難以掌握D.數(shù)據(jù)挖掘的結(jié)果一定是準(zhǔn)確無誤的,可以直接用于決策18、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的工具有很多,其中Tableau是一種常用的工具。以下關(guān)于Tableau的描述中,錯誤的是?()A.Tableau可以連接多種數(shù)據(jù)源,進(jìn)行數(shù)據(jù)的導(dǎo)入和整合B.Tableau可以制作各種類型的圖表,進(jìn)行數(shù)據(jù)可視化C.Tableau的操作簡單易學(xué),適用于非專業(yè)用戶D.Tableau只能處理小規(guī)模數(shù)據(jù)集,對于大規(guī)模數(shù)據(jù)集無法處理19、在數(shù)據(jù)分析中,特征工程用于從原始數(shù)據(jù)中提取有意義的特征。假設(shè)要對文本數(shù)據(jù)進(jìn)行特征工程,以下關(guān)于特征工程的描述,哪一項(xiàng)是不正確的?()A.可以使用詞頻-逆文檔頻率(TF-IDF)來衡量單詞在文本中的重要性B.詞嵌入技術(shù),如Word2Vec,可以將單詞表示為低維向量C.特征工程只需要考慮數(shù)據(jù)的數(shù)值特征,對于文本等非數(shù)值特征不需要處理D.特征選擇可以去除冗余和無關(guān)的特征,提高模型的效率和性能20、在數(shù)據(jù)分析的深度學(xué)習(xí)模型中,以下關(guān)于卷積神經(jīng)網(wǎng)絡(luò)(CNN)的描述,不準(zhǔn)確的是()A.CNN適用于處理圖像和音頻等具有空間結(jié)構(gòu)的數(shù)據(jù)B.CNN通過卷積層和池化層自動提取特征C.CNN的訓(xùn)練需要大量的數(shù)據(jù)和較高的計(jì)算資源D.CNN不能用于文本數(shù)據(jù)的處理21、在進(jìn)行數(shù)據(jù)分析時,需要對數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理。標(biāo)準(zhǔn)化處理的主要目的是?()A.消除量綱的影響B(tài).使數(shù)據(jù)符合正態(tài)分布C.減少數(shù)據(jù)的誤差D.提高數(shù)據(jù)的準(zhǔn)確性22、數(shù)據(jù)分析中的主成分分析(PCA)常用于數(shù)據(jù)降維。假設(shè)我們有一個高維的數(shù)據(jù)集,包含多個相關(guān)的特征。通過PCA降維后,如果解釋方差的比例較低,可能意味著什么?()A.降維效果較好,保留了主要信息B.丟失了較多的重要信息,需要重新考慮降維方法C.原始數(shù)據(jù)的質(zhì)量較差D.對后續(xù)的分析和建模沒有影響23、數(shù)據(jù)分析中的生存分析用于研究事件發(fā)生的時間。假設(shè)我們要研究患者的生存時間。以下關(guān)于生存分析的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以計(jì)算生存率、中位生存時間等指標(biāo)B.Cox比例風(fēng)險(xiǎn)模型常用于生存分析中的風(fēng)險(xiǎn)因素評估C.生存分析只適用于醫(yī)學(xué)領(lǐng)域,在其他領(lǐng)域沒有應(yīng)用D.可以考慮協(xié)變量對生存時間的影響24、在數(shù)據(jù)分析中,若要研究變量之間的因果關(guān)系,以下哪種方法可能會被采用?()A.實(shí)驗(yàn)設(shè)計(jì)B.格蘭杰因果檢驗(yàn)C.結(jié)構(gòu)方程模型D.以上都有可能25、數(shù)據(jù)分析在醫(yī)療領(lǐng)域有著重要的應(yīng)用。以下關(guān)于數(shù)據(jù)分析在醫(yī)療中的作用,不準(zhǔn)確的是()A.可以幫助醫(yī)療機(jī)構(gòu)分析患者的病歷數(shù)據(jù),優(yōu)化治療方案,提高醫(yī)療質(zhì)量B.通過對醫(yī)療影像數(shù)據(jù)的分析,輔助疾病的診斷和篩查C.利用傳感器收集的實(shí)時健康數(shù)據(jù)進(jìn)行監(jiān)測和預(yù)警,實(shí)現(xiàn)個性化的醫(yī)療服務(wù)D.數(shù)據(jù)分析在醫(yī)療領(lǐng)域的應(yīng)用還處于初級階段,對醫(yī)療實(shí)踐的影響非常有限二、簡答題(本大題共4個小題,共20分)1、(本題5分)描述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的因果發(fā)現(xiàn),包括基于觀測數(shù)據(jù)和實(shí)驗(yàn)數(shù)據(jù)的方法,并舉例分析。2、(本題5分)在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的特征工程?包括特征提取、選擇和構(gòu)建,請舉例說明不同方法的應(yīng)用。3、(本題5分)說明在數(shù)據(jù)分析中如何進(jìn)行數(shù)據(jù)的降維以提高計(jì)算效率和可視化效果?請闡述常見的降維方法和技術(shù),并舉例說明。4、(本題5分)簡述數(shù)據(jù)挖掘中的推薦系統(tǒng),包括協(xié)同過濾、基于內(nèi)容的推薦等,說明其工作原理和應(yīng)用場景。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)某健身俱樂部收集了會員的健身項(xiàng)目選擇、鍛煉頻率、身體指標(biāo)等數(shù)據(jù)。研究怎樣根據(jù)這些數(shù)據(jù)為會員提供個性化的健身方案。2、(本題5分)某社交媒體平臺記錄了用戶的關(guān)注關(guān)系、互動頻率、內(nèi)容發(fā)布時間等數(shù)據(jù)。探討如何依據(jù)這些數(shù)據(jù)發(fā)現(xiàn)社交網(wǎng)絡(luò)中的關(guān)鍵節(jié)點(diǎn)和傳播規(guī)律。3、(本題5分)某物流公司積累了貨物運(yùn)輸?shù)钠瘘c(diǎn)、終點(diǎn)、運(yùn)輸方式、運(yùn)輸時間等數(shù)據(jù)。分析如何基于這些數(shù)據(jù)優(yōu)化運(yùn)輸網(wǎng)絡(luò)和資源配置。4、(本題5分)某超市收集了不同季節(jié)、節(jié)假日的商品銷售數(shù)據(jù)和顧客消費(fèi)習(xí)慣。探討怎樣利用這些數(shù)據(jù)進(jìn)行精準(zhǔn)的庫存管理和促銷活動策劃。5、(本題5分)某在線醫(yī)療平臺的慢性病管理數(shù)據(jù)包含患者信息、疾病類型、治療周期、復(fù)診情況等。分析不同慢性病類型的治療周期和復(fù)診規(guī)律。四、論述題(本大題共3個小題,共30分)1、(本題10分)物流行業(yè)在貨物運(yùn)輸和倉儲管理中積累了豐富的數(shù)據(jù)。探討如何借助數(shù)據(jù)分析方法,比如運(yùn)輸路徑優(yōu)化、庫存水平預(yù)測等,降低物流成本、提高物流服務(wù)的時效性和準(zhǔn)確性,同時研究在數(shù)據(jù)實(shí)時性要求、供應(yīng)鏈不確定性和物流信息系統(tǒng)集成方面所面臨的挑戰(zhàn)及解決途徑。2、(本題10分)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論