2024年全球氫能評論Global Hydrogen Review 2024_第1頁
2024年全球氫能評論Global Hydrogen Review 2024_第2頁
2024年全球氫能評論Global Hydrogen Review 2024_第3頁
2024年全球氫能評論Global Hydrogen Review 2024_第4頁
2024年全球氫能評論Global Hydrogen Review 2024_第5頁
已閱讀5頁,還剩290頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

GlobalHydrogenReview2024

INTERNATIONALENERGYAGENCY

TheIEAexaminesthefullspectrum

ofenergyissuesincludingoil,gasandcoalsupplyanddemand,renewableenergytechnologies,electricitymarkets,energyefficiency,accesstoenergy,demandsidemanagementandmuchmore.Throughitswork,theIEAadvocatespoliciesthatwillenhancethereliability,affordabilityandsustainabilityofenergyinits

31membercountries,

13associationcountriesandbeyond.

Thispublicationandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.

IEAmembercountries:

AustraliaAustriaBelgiumCanada

CzechRepublicDenmarkEstonia

FinlandFranceGermanyGreeceHungaryIrelandItalyJapanKoreaLithuania

LuxembourgMexicoNetherlandsNewZealandNorwayPolandPortugal

SlovakRepublicSpain

SwedenSwitzerlandRepublicofTürkiyeUnitedKingdomUnitedStates

TheEuropeanCommissionalsoparticipatesintheworkoftheIEA

IEAassociationcountries:

ArgentinaBrazilChinaEgyptIndiaIndonesiaKenya

MoroccoSenegalSingaporeSouthAfricaThailand

Ukraine

Revisedversion,October2024

Informationnoticefoundat:

/corrections

Source:IEA.

InternationalEnergyAgencyWebsite:

GlobalHydrogenReview2024

Abstract

Page|

PAGE

IEA.CCBY4.0.

Abstract

TheGlobalHydrogenReviewisanannualpublicationbytheInternationalEnergyAgencythattrackshydrogenproductionanddemandworldwide,aswellasprogressincriticalareassuchasinfrastructuredevelopment,trade,policy,regulation,investmentsandinnovation.

Thereportisanoutputofthe

CleanEnergyMinisterialHydrogenInitiative

andisintendedtoinformenergysectorstakeholdersonthestatusandfutureprospectsofhydrogen.Focusingonhydrogen’spotentialroleinmeetinginternationalenergyandclimategoals,theReviewaimstohelpdecisionmakersfine-tunestrategiestoattractinvestmentandfacilitatedeploymentofhydrogentechnologiesatthesametimeascreatingdemandforhydrogenandhydrogen-basedfuels.Itcomparesreal-worlddevelopmentswiththestatedambitionsofgovernmentandindustry.

Thisyear’sreporthasaspecialfocusonLatinAmericaandincludesanalysisonrecentdevelopmentsoflow-emissionshydrogenprojectsintheregionandhowtounlockdemandandmovetowardsprojectimplementation.Inaddition,thereportassessesindetailthegreenhousegasemissionsassociatedwithdifferenthydrogensupplychains.

GlobalHydrogenReview2024

Acknowledgements

Page|

PAGE

Acknowledgements,contributorsandcredits

TheGlobalHydrogenReviewwaspreparedbytheEnergyTechnologyPolicy(ETP)DivisionoftheDirectorateofSustainability,TechnologyandOutlooks(STO)oftheInternationalEnergyAgency(IEA).ThestudywasdesignedanddirectedbyTimurGül,ChiefEnergyTechnologyOfficer.

UweRemme(HeadoftheHydrogenandAlternativeFuelsUnit)andJoseMiguelBermudezMenendezco-ordinatedtheanalysisandproductionofthereport.

TheprincipalIEAauthorsandcontributorswere(inalphabeticalorder):GiovanniAndrean(CCUSandgeospatialanalysis),SimonBennett(leadoninvestment),HeribBlanco(leadongreenhousegasesandpolicies;LatinAmerica),SaraBudinis(leadonCCUS),JonghoonChae(electricitygeneration),ElizabethConnelly(leadontransport),ChiaraDelmastro(leadonbuildings),StavroulaEvangelopoulou(productionanddatamanagement),MathildeFajardy(CCUS),AlexandreGouy(industry),RafaelMartinezGordon(buildings),ShaneMcDonagh(transport),MegumiKotani(policies),FrancescoPavan(leadonproductionandtrade),AmaliaPizarro(leadonLatinAmericaandinfrastructure;innovation),RichardSimon(leadonindustry)andDenizUgur(investment).

ThedevelopmentofthisreportbenefittedfromcontributionsprovidedbythefollowingIEAcolleagues:YasminaAbdelilah,AnaAlcaldeBáscones,LeonardoColina,IlkkaHannula,MartinKueppers,GabrielLeiva,QuentinMinier,PedroNinodeCarvalho,JenniferOrtizandMirkoUliano.

ValuablecommentsandfeedbackwereprovidedbyseniormanagementandothercolleagueswithintheIEA,inparticularLauraCozzi,KeisukeSadamori,TimGould,PaoloFrankl,DennisHesseling,AlessandroBlasi,andAraceliFernandezPales.

Withgreatappreciation,wethankJoergHusarandAlejandraBernalwhoprovidedessentialsupportintheengagementwithLatinAmericastakeholders.

LizzieSayereditedthemanuscriptwhileAnnaKalistaandPer-AndersWidellprovidedessentialsupportthroughouttheprocess.

IEA.CCBY4.0.

SpecialthanksgotoProf.DetlefStoltenandhisteamatJülichSystemsAnalysis,ForschungszentrumJülich(HeidiHeinrichs,DanielRosales,ChristophWinkler,BernhardWortmann)fortheirmodelanalysisonhydrogenproductioncostsandanalyticalinputonwaterstresslevels.

GlobalHydrogenReview2024

Acknowledgements

Page|

PAGE

ThanksalsototheIEACommunicationsandDigitalOfficefortheirhelpinproducingthereport,particularlytoJethroMullen,CurtisBrainard,PoeliBojorquez,JonCuster,AstridDumond,MerveErdil,LivGaunt,GraceGordon,ClaraValloisandWonjikYang.

TheworkbenefittedfromthefinancialsupportprovidedbytheGovernmentsofCanadaandJapan.ThefollowinggovernmentshavealsocontributedtothereportthroughtheirvoluntarycontributiontotheCEMHydrogenInitiative:Australia,Austria,Canada,Finland,Germany,theEuropeanCommission,theNetherlands,Norway,theUnitedKingdomandtheUnitedStates.

Specialthanksgotothefollowingorganisationsandinitiativesfortheirvaluablecontributions:AdvancedFuelCellsTCP,HydrogenCouncil,HydrogenTCP,andInternationalPartnershipforHydrogenandFuelCellsintheEconomy(IPHE).

IEA.CCBY4.0.

Peerreviewersprovidedessentialfeedbacktoimprovethequalityofthereport.Theyinclude:NawalYousifAlhanaee,MaryamMohammedAlshamsiandAbdallaTalalAlhammadi(MinistryofEnergyandInfrastructure,UnitedArabEmirates);Abdul'AzizAliyu(GHGTCP);LaurentAntoniandNoévanHulst(IPHE);FlorianAusfelder,ThomasHildandIsabelKundler(Dechema);EstebanBarrantesVásquez(MinistryofEnvironmentandEnergy,CostaRica);FabianBarrera,MatthiasDelteil,MatthiasDeutschandLeandroJanke(AgoraEnergiewende);HamedBashiri,RobBlack,CarolineCzach,KathrynGagnon,AmandeepGarcha,EllenHandyside,AmirHanifi,OshadaMendis,CassieShang,MargaretSkwara,PhilTomlinsonandNicholeWarkotsch(NaturalResourcesCanada);LionelBoillot(EUCleanHydrogenPartnership);DavidBolsmanandAlfredMosselaar(RVO,Netherlands);PaolaBrunetto(Enel);FitzgeraldCantero(OLADE);FlorimarCeballosandRocíoValero(HydrogenTCP);PingChen(DalianInstituteofChemicalPhysics);TudorConstantinescu(DGENER,EuropeanCommission);Anne-SophieCorbeau(CenteronGlobalEnergyPolicy,ColumbiaUniversity);LindaDempsey(CFIndustries);LuisDiazgranadosandWouterVanhoudt(Hinicio);RobertDickinson,StuartWalshandChanglongWang(MonashUniversity);JoeDoleschal-Ridnell,DorisFujiandShirleyOliveira(BP);RobertFischer(SWEA);TudorFlorea(MinistryofEcologicalTransition,France);AlexandruFloristean(Hy24);DanielFraile(HydrogenEurope);MatiasGarcía(MinistryofEnergy,Chile);EricC.Gaucher(LavoisierH2Ceoconsult);DolfGielen,CarolinaLopezRochaandSimonaSulikova(WorldBank);CelineLeGoazigo(WBCSD);JeffreyGoldmeerandKanikaTayal(GEVernova);MariaJoseGonzalezandMartínScarone(MinistryofIndustry,EnergyandMines,Uruguay);MarineGorner,JulianHoelzenandFrédériqueRigal(Airbus);PatrickGraichen(Independent);EmileHerben(Yara);StephanHerbstandKoichiNumata(Toyota);YoshinariHiki(ENEOS);KenjiIshizawa(IHICorporation);SteveJames(MinistryofBusiness,Innovation&Employment,NewZealand);NicolasJensen(TES);ConnorKerrandTJKirk(RockyMountainInstitute);IlhanKim(MinistryofTrade,

IEA.CCBY4.0.

IndustryandEnergy,Korea);YoshikazuKobayashi(TheInstituteofEnergyEconomics,Japan);LeifChristianKr?ger(ThyssenkruppNucera);ThomasKwan(SchneiderElectric);PierreLaboué(FranceHydrogène);MartinLambert(OxfordInstituteforEnergyStudies);WilcovanderLans(PortofRotterdamAuthority);FranciscoLaveron(Iberdrola);FranzLehnerandJanStelter(NOWGmbH);MichaelLeibrandt(FederalMinistryforEconomicAffairsandClimateAction,Germany);PaulLuccheseandJulieMougin(CEA);AlbertoDiLullo,AndreaDiStefanoandAndreaPisano(Eni);ConstanzaMeneses(H2LAC);MatteoMicheliandAndreaTriki(GermanEnergyAgency);SusanaMoreira(H2Global-HINT.Co);PatriciaNaccache(MinistryofMinesandEnergyofBrazil);MasashiNagai(Chiyoda);MotohikoNishimura(KawasakiHeavyIndustries);MaríaTeresaNonayDomingo(Enagás);ArielPérez(Hychico);CédricPhilibert(Independent);AndrewPurvis(WorldSteelAssociation);CarlaRobledoandDouweRoest(MinistryofEconomicAffairsandClimate,theNetherlands);AgustínRodríguezRiccio(Topsoe);XavierRousseau(Snam);SunitaSatyapal,JacobEnglander,MarcMelainaandNehaRustagi(DepartmentofEnergy,UnitedStates);SophieSauerteig(DepartmentforEnergySecurityandNetZero,UnitedKingdom);RobertSchouwenaar(Shell);GuillaumeDeSmedt(AirLiquide);MichaelSmith(DepartmentofClimateChange,Energy,theEnvironmentandWater,Australia);MatthijsSoede(DGR&I,EuropeanCommission);UrszulaSzalkowska(EcoEngineers);KenjiTakahashi(JERA);AndreiTchouvelev(ISO);DenisThomas(AccelerabyCummins);TatianaVilarinhoFranco(FortescueFutureIndustries);MarcelWeeda(TNO);JoeWilliams(GreenHydrogenOrganisation);JuanCamiloZapata(MinistryofMinesandEnergy,Colombia).

GlobalHydrogenReview2024

Tableofcontents

Page|

PAGE

Tableofcontents

Executivesummary 9

Recommendations 14

GlobalHydrogenReviewSummaryProgress 16

Chapter1.Introduction 17

Overview 17

TheCEMHydrogenInitiative 18

Chapter2.Hydrogendemand 20

Highlights 20

Overviewandoutlook 21

Refining 28

Industry 32

Transport 37

Buildings 53

Electricitygeneration 54

Chapter3.Hydrogenproduction 59

Highlights 59

Overviewandoutlook 60

Electrolysis 66

FossilfuelswithCCUS 78

Comparisonofdifferentproductionroutes 81

Emergingproductionroutes 94

Hydrogen-basedfuelsandfeedstock 99

Chapter4.Tradeandinfrastructure 104

Highlights 104

Overview 105

Statusandoutlookofhydrogentrade 105

Statusandoutlookofhydrogeninfrastructure 113

Chapter5.Investment,financeandinnovation 135

Highlights 135

Investmentinthehydrogensector 136

Innovationinhydrogentechnologies 150

Chapter6.Policies 163

Highlights 163

Overview 164

IEA.CCBY4.0.

Strategiesandtargets 166

IEA.CCBY4.0.

Demandcreation 172

Mitigationofinvestmentrisks 178

PromotionofRD&D,innovationandknowledge-sharing 190

Certification,standards,regulations 194

Chapter7.GHGemissionsofhydrogenanditsderivatives 203

Highlights 203

Overview 204

Systemboundariesandscopeofemissions 206

Emissionsintensitiesofhydrogenproductionroutes 208

Emissionsintensitiesofammoniaproductionroutes 215

Emissionsintensitiesof(re)conversionandshippingofhydrogencarriers 216

Emissionsintensityofcarbon-containinghydrogen-basedfuels 223

EffectoftemporalcorrelationonGHGemissions 230

Chapter8.LatinAmericainfocus 234

Highlights 234

Unlockingthepotentialoflow-emissionshydrogeninLatinAmericaandtheCaribbean 235

Overview 237

Low-emissionshydrogenproduction 242

Low-emissionshydrogendemand 247

Movingtowardsimplementation 269

Annex 287

Explanatorynotes 287

Abbreviationsandacronyms 289

GlobalHydrogenReview2024

Executivesummary

Page|

PAGE

Executivesummary

Moreprojectsandmorefinalinvestmentdecisions,butsetbackspersist

Globalhydrogendemandreached97Mtin2023,anincreaseof2.5%comparedto2022.Demandremainsconcentratedinrefiningandthechemicalsector,andisprincipallycoveredbyhydrogenproducedfromunabatedfossilfuels.Asinpreviousyears,low-emissionshydrogenplayedonlyamarginalrole,withproductionoflessthan1Mtin2023.However,low-emissionshydrogenproductioncouldreach49Mtpaby2030basedonannouncedprojects,almost30%morethanwhentheGlobalHydrogenReview2023wasreleased.Thisstronggrowthhasbeenmostlydrivenbyelectrolysisprojects,withannouncedelectrolysiscapacityamountingtoalmost520GW.Thenumberofprojectsthathavereachedafinalinvestmentdecision(FID)isalsogrowing:AnnouncedproductionthathastakenFIDdoubledcomparedwithlastyeartoreach3.4Mtpa,representingafivefoldincreaseontoday’sproductionby2030.Thisissplitroughlyevenlybetweenelectrolysis(1.9Mtpa)andfossilfuelswithcarboncapture,utilisationandstorage(CCUS)(1.5Mtpa).

HydrogenproductionfromfossilfuelswithCCUShasgainedgroundoverthepastyear–althoughthetotalpotentialproductionfromannouncedprojectsgrewonlymarginallycomparedwithlastyear,therewereseveralFIDsforpreviouslyannouncedlarge-scaleprojects,allofwhicharelocatedinNorthAmericaandEurope.Asaresult,thepotentialproductionin2030fromprojectsusingfossilfuelswithCCUSthathavetakenFIDmorethandoubledinthelastyear,from

0.6MtpainSeptember2023to1.5Mtpatoday.

IEA.CCBY4.0.

Overall,thisisnoteworthyprogressforanascentsector,butmostofthepotentialproductionisstillinplanningoratevenearlierstages.Forthefullprojectpipelinetomaterialise,thesectorwouldneedtogrowatanunprecedentedcompoundannualgrowthrateofover90%from2024until2030,wellabovethegrowthexperiencedbysolarPVduringitsfastestexpansionphases.Severalprojectshavefaceddelaysandcancellations,whichareputtingatriskasignificantpartoftheprojectpipeline.Themainreasonsincludeuncleardemandsignals,financinghurdles,delaystoincentives,regulatoryuncertainties,licensingandpermittingissuesandoperationalchallenges.

GlobalHydrogenReview2024

Executivesummary

Mapofannouncedlow-emissionshydrogenproductionprojects,2024

Source:IEA

HydrogenProjectsdatabase

(October2024).

Chinaandelectrolysers–thesequeltosolarPVandbatteries?

AnnouncedelectrolysercapacitythathasreachedFIDnowstandsat20GWglobally,ofwhich6.5GWreachedFIDoverthelast12monthsalone.Chinaisstrengtheningitsleadership,accountingformorethan40%ofglobalFIDsincapacitytermsoverthesameperiod.China’sfront-runningpositionisbackedbyitsstrengthinthemassmanufacturingofcleanenergytechnologies:itishometo60%ofglobalelectrolysermanufacturingcapacity.China’scontinuedexpansionofmanufacturingcapacityisexpectedtodrivedownelectrolysercosts,ashasoccurredwithsolarPVandbatterymanufacturinginthepast.Moreover,severallargeChinesemanufacturersofsolarpanelshaveenteredthebusinessofmanufacturingelectrolysers,andtodaytheyaccountforaroundone-thirdofChina’selectrolysermanufacturingcapacity.However,otherregionsarealsosteppingupefforts:inEurope,FIDsforelectrolysisprojectsquadrupledoverthelastyeartoreachmorethan2GW,whileIndiahasemergedasoneofthekeyplayersthankstoasingleFIDfor1.3GW.

IEA.CCBY4.0.

PAGE|10

GlobalHydrogenReview2024

Executivesummary

Technologyinnovationismakingheadway,withsignspointingtoacceleratedprogressinthenearterm

GovernmentinvestmentinhydrogentechnologyRD&Dhasbeengrowingsince2016,andthiseffortisstartingtobearfruit.Todate,progresshasoccurredmostlyonthesupplyside,andnumeroustechnologiesareeitheralreadycommerciallyavailableorclosetothispoint.Promisingresultsarealsobeingseenforend-usetechnologies,withseveralapplicationsinindustryandelectricitygenerationreachingdemonstrationstage,aswellassignificantprogressintransportapplications,particularlyintheshippingsector.Inaddition,thenumberofpatentapplicationsleaptup47%in2022,withmostofthegrowthcomingfromtechnologiesthatareprimarilymotivatedbyclimatechangeconcerns.IncreasedactivityaroundpatentingsuggeststhatadditionalpublicfundingforR&Dandgrowingconfidenceinfuturemarketopportunities,backedbysupportivepolicies,arestimulatingmorenewideasandproductdesignswithcommercialpotential.

Low-emissionshydrogenwillremainexpensiveintheshortterm,butcostsareexpectedtofallsignificantly

Low-emissionshydrogenisanemergingsectorand,assuch,thereisuncertaintyaboutcosts.Today’selectrolysercostshavebeenrevisedupwardsforthisreport,basedonnewlyavailabledatafrommoreadvancedprojects.Thefuturecostevolutionwilldependonnumerousfactors,suchastechnologydevelopment,andparticularlyonthelevelandpaceofdeployment.WiththedeploymentseenintheIEA’sNetZeroEmissionsby2050Scenario(NZEScenario),thecostoflow-emissionshydrogenproductionfromrenewableelectricityfallstoUSD2-9/kgH2by2030–halfoftoday’svalue–withthecostgapwithunabatedfossil-basedproductionshrinkingfromUSD1.5-8/kgH2todaytoUSD1-3/kgH2by2030.DeploymentlevelsintheStatedPoliciesScenario(whichconsidersexistingpoliciesonly)meanthatthecostrangewouldfallonlyaround30%.Asnaturalgaspricesfallinmanyregions,low-emissionshydrogenproductionfromnaturalgaswithCCUSisalsosettoexperiencecostreductions.

Costreductionswillbenefitallprojects,buttheimpactonthecompetitivenessofindividualprojectswillvary.Forexample,fulldevelopmentoftheentireelectrolyserprojectpipelineofalmost520GWwouldachievesimilarglobalcostreductionsasintheNZEScenario.InChina,globaldeploymentatsuchalevelwouldmeanthatthevastmajorityoftheproductionfromitscurrentelectrolyserprojectpipeline(1Mtpa)wouldbecheaperthanhydrogenproducedfromunabatedcoal.Globally,by2030,morethan5Mtpacouldbeproducedatacostcompetitivewithproductionfromunabatedfossilfuels,andupto12MtpawithacostpremiumofUSD1.5/kgH2.

IEA.CCBY4.0.

PAGE|11

GlobalHydrogenReview2024

Executivesummary

Thiscostgapwillremainanimportantchallengeintheshorttermforprojectdevelopers,butforfinalproductsforwhichhydrogenisanintermediatefeedstock,theimpactislikelytobemanageableinmanycases.Thecostpremiumoflow-emissionshydrogenproductiondecreasesalongthevaluechain,meaningthatconsumersoftenseeonlyamodestpriceincreaseinfinalproducts.Forexample,usingsteelproducedwithrenewablehydrogentodayintheproductionofelectricvehicles(EVs)wouldincreasethetotalpriceofanEVbyaround1%.

Progressisbeingmadeincreatingdemandforlow-emissionshydrogen,butthisstillneedstoscaleup

Effortstostimulatedemandforlow-emissionshydrogen(andhydrogen-basedfuels)arenowgainingtractionasgovernmentsbeginimplementingkeypolicies(suchasCarbonContractsforDifferenceinGermanyandtheEUmandatesinaviationandshipping).Thesemeasureshavealsotriggeredactionontheindustryside,withagrowingnumberofofftakeagreementssignedandthelaunchoftenderstopurchaselow-emissionshydrogen.However,theoverallscaleoftheseeffortsremainsinadequateforhydrogentocontributetomeetingclimategoals.

Policiesandtargetsforhydrogendemandsetbygovernmentsadduptoaround11Mtin2030,nearly3Mtlowerthanlastyearduetothedownwardrevisionsofsometargetsforhydrogenuseinindustry,transportandpowergeneration.Yettheamountoflow-emissionshydrogenproductionthathastakenFID(3.4Mtpa)orisalreadyoperational(0.7Mtpa),at4Mtpa,iswellbelowthatlevel.Thegapconstitutesacallforactiontoindustryandgovernmentstofacilitateofftakeagreementsthatcanhelpunlockinvestmentonthesupplyside.

Atthesametime,governmentpoliciesandtargetsfordemandarewellbehindtheproductiontargetsbygovernments(whichaddupto43Mtpain2030)andareevenlowerthanthepotentialsupplythatcouldbeachievedfromannouncedprojects(49Mtpa).Policymeasuresarestillinsufficienttocreatethelevelofdemandneededtoscaleupproductiontomeetgovernmentexpectations.Inaddition,somemoreambitiousactions(liketheEUtargetsinindustryapplicationsortherefiningquotasinIndia)havenotyetbeentranslatedintonationallegislation.Moreover,fromthearoundUSD100billionofpolicysupportforlow-emissionshydrogenadoptionannouncedbygovernmentsoverthepastyear,supportonthesupplysideis50%largerthanonthedemandside.Strongergovernmentactionwillbeneededtostimulatedemandforlow-emissionshydrogenasanessentialrequirementtounderpininvestmentsonthesupplyside.Industrialhubs,wherelow-emissionshydrogencouldreplacetheexistinglargedemandforhydrogenmettodaybyunabatedfossilfuels,remainanimportantuntappedopportunityforgovernmentstostimulatedemand.

IEA.CCBY4.0.

PAGE|12

GlobalHydrogenReview2024

Executivesummary

Thenextstepsforcertificationandmutualrecognition

Governmentsareacceleratingthedevelopmentofregulationsontheenvironmentalattributesoflow-emissionshydrogen,particularlyregardinggreenhousegas(GHG)emissions.Clearandpredictableregulationscanstrengthencertaintyforlong-terminvestments.Yettheseframeworks,andtheassociatedcertificationschemes,remainunalignedacrossdifferentregions,creatingpotentialformarketfragmentation.Inresponse,atCOP28,37governmentscommittedtomutualrecognitionofnationalcertificationschemes,whileLatinAmericalaunched“CertHiLAC”,aregionalcertificationframework.Inaddition,theInternationalOrganizationforStandardization(ISO)hasreleasedamethodologyfordeterminingGHGemissionsassociatedwithhydrogenproduction,transportandconversion/reconversion.Thiswillbethebasisforafullstandardexpectedby2025or2026,whichcouldserveasacommonmethodologytoenablethemutualrecognitionofcertificates.However,somequestionsrelatedtotheassessmentofGHGemissionsinhydrogensupplychainsremainunresolved,suchashowtoaccountforemissionsfromtheconstructionandmanufacturingofproductionassets.Inthecaseoffossil-basedproduction,thereisaneedforbetterdataonupstreamandmidstreamemissionsoffossilfuelsupplyavailableinnationalinventoriesinordertoensurerobustassessmentoftheGHGemissionsassociatedwiththeseproductionroutes.

HydrogencanbeanopportunityforLatinAmericainthenewenergyeconomy,butisfacingchallenges

Thisyear’sreportincludesaspecialfocusonLatinAmericaandtheCaribbean,followingthelaunchoftheIEA’sLatinAmericaEnergyOutlookin2023.LatinAmericaiswell-positionedtoemergeasamajorproduceroflow-emissionshydrogen,capitalisingonitsabundantnaturalandrenewableenergyresourcesandlargelydecarbonisedelectricitymix.Basedonannouncedprojects,by2030,LatinAmericacouldproducemorethan7Mtpaofhydrogenwithacarbonintensitybelow3kgCO2-eq/kgH2(3-4timeslowerthanusingunabatednaturalgas),inlinewiththerequirementsofseveralexistingregulationsaroundtheworld(e.g.theEUTaxonomy,Japan’sHydrogenSocietyPromotionActandtheUSCleanHydrogenProductionStandard).However,achievingthispotentialinfullwouldrequireasignificantincreaseinelectricitygenerationcapacity–equivalentto20%oftheregion’scurrentpoweroutput–andsubstantialinvestmentsinenablinginfrastructure,suchastransmissionlines.

ManyLatinAmericancountriesalreadyhavehydrogenstrategieswithastrongfocusonexportopportunities.However,theseplansmayneedtobeupdatedinlightofuncertaintyaboutthesizeoftheglobalhydrogenmarket.Atthegloballevel,therehasbeennogrowthinannouncedprojectslinkedtotradeofhydrogenandhydrogen-basedfuelsinthepastyear,suggestingthatprojectdevelopers

IEA.CCBY4.0.

PAGE|13

GlobalHydrogenReview2024

Executivesummary

haveinsteadfocusedondomesticopportunities.InthecaseofLatinAmerica,theseopportunitiesaremostlyinrefiningandammoniaproduction,whichofferimmediatelarge-scaleapplications.Inthecaseofammonia,developingdomesticproductioncapacitieswouldhelptoreduceimportdependencyforfertilisersinaregionwhereagriculturemakesasignificantcontributiontonationalgrossdomesticproduct.

Asthemarketdevelops,newapplicationsinsteel,shippingandaviationwillemerge,togetherwiththeestablishmentofhydrogenhubs.Thesehubscanopenanopportunitytoscaleuphydrogenuseandproductionfordomesticneeds,whilealsoprovidingtheopportunitytoexporthydrogen-basedfuels,aswellasmaterialsproducedwithlow-emissionshydrogen,suchashotbriquettediron,allowingcountriesthataretodaylargeexportersofironore,likeBrazil,todevelopnewindustrialcapacitiesandscaleupinthevaluechain.Aphasedapproachtosupplyintheregion,startingwithsmaller-scaleprojects,willhelpmitigaterisks,reducecapitalinvestment,andprovidevaluableexperienceforscalingupinthefuture.Infrastructureplanninganddevelopment,especiallyinlong-leadprojectslikepowertransmission,shouldbeginimmediatelytosupportfuturehydrogenproduction.

Recommendations

Acceleratedemandcreationforlow-emissionshydrogenbyleveragingindustrialhubsandpublicprocurement

Governmentsshouldtakebolderactiontostimulatedemandforlow-emissionshydrogen.Theimplementationofpoliciessuchasquotas,mandatesandcarboncontractsfordifferencehasalreadystarted,butremainslimitedingeographicalcoverageandscale.Governmentscancapitaliseontheopportunityofferedbyexistinghydrogenusersandhigh-valuesectorssuchassteel,shippingandaviation,whichareoftenco-locatedinindustrialhubs.Poolingdemandinthesehubscancreatescaleandreduceofftakerisksforproducers.Additionally,makinguseofpublicprocurementforfinalproductsthatconsumelow-emissionshydrogenintheirproduction,andencouragingthedevelopmentofmarketswhereconsumersare

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論