




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
GlobalHydrogenReview2024
INTERNATIONALENERGYAGENCY
TheIEAexaminesthefullspectrum
ofenergyissuesincludingoil,gasandcoalsupplyanddemand,renewableenergytechnologies,electricitymarkets,energyefficiency,accesstoenergy,demandsidemanagementandmuchmore.Throughitswork,theIEAadvocatespoliciesthatwillenhancethereliability,affordabilityandsustainabilityofenergyinits
31membercountries,
13associationcountriesandbeyond.
Thispublicationandanymapincludedhereinarewithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.
IEAmembercountries:
AustraliaAustriaBelgiumCanada
CzechRepublicDenmarkEstonia
FinlandFranceGermanyGreeceHungaryIrelandItalyJapanKoreaLithuania
LuxembourgMexicoNetherlandsNewZealandNorwayPolandPortugal
SlovakRepublicSpain
SwedenSwitzerlandRepublicofTürkiyeUnitedKingdomUnitedStates
TheEuropeanCommissionalsoparticipatesintheworkoftheIEA
IEAassociationcountries:
ArgentinaBrazilChinaEgyptIndiaIndonesiaKenya
MoroccoSenegalSingaporeSouthAfricaThailand
Ukraine
Revisedversion,October2024
Informationnoticefoundat:
/corrections
Source:IEA.
InternationalEnergyAgencyWebsite:
GlobalHydrogenReview2024
Abstract
Page|
PAGE
IEA.CCBY4.0.
Abstract
TheGlobalHydrogenReviewisanannualpublicationbytheInternationalEnergyAgencythattrackshydrogenproductionanddemandworldwide,aswellasprogressincriticalareassuchasinfrastructuredevelopment,trade,policy,regulation,investmentsandinnovation.
Thereportisanoutputofthe
CleanEnergyMinisterialHydrogenInitiative
andisintendedtoinformenergysectorstakeholdersonthestatusandfutureprospectsofhydrogen.Focusingonhydrogen’spotentialroleinmeetinginternationalenergyandclimategoals,theReviewaimstohelpdecisionmakersfine-tunestrategiestoattractinvestmentandfacilitatedeploymentofhydrogentechnologiesatthesametimeascreatingdemandforhydrogenandhydrogen-basedfuels.Itcomparesreal-worlddevelopmentswiththestatedambitionsofgovernmentandindustry.
Thisyear’sreporthasaspecialfocusonLatinAmericaandincludesanalysisonrecentdevelopmentsoflow-emissionshydrogenprojectsintheregionandhowtounlockdemandandmovetowardsprojectimplementation.Inaddition,thereportassessesindetailthegreenhousegasemissionsassociatedwithdifferenthydrogensupplychains.
GlobalHydrogenReview2024
Acknowledgements
Page|
PAGE
Acknowledgements,contributorsandcredits
TheGlobalHydrogenReviewwaspreparedbytheEnergyTechnologyPolicy(ETP)DivisionoftheDirectorateofSustainability,TechnologyandOutlooks(STO)oftheInternationalEnergyAgency(IEA).ThestudywasdesignedanddirectedbyTimurGül,ChiefEnergyTechnologyOfficer.
UweRemme(HeadoftheHydrogenandAlternativeFuelsUnit)andJoseMiguelBermudezMenendezco-ordinatedtheanalysisandproductionofthereport.
TheprincipalIEAauthorsandcontributorswere(inalphabeticalorder):GiovanniAndrean(CCUSandgeospatialanalysis),SimonBennett(leadoninvestment),HeribBlanco(leadongreenhousegasesandpolicies;LatinAmerica),SaraBudinis(leadonCCUS),JonghoonChae(electricitygeneration),ElizabethConnelly(leadontransport),ChiaraDelmastro(leadonbuildings),StavroulaEvangelopoulou(productionanddatamanagement),MathildeFajardy(CCUS),AlexandreGouy(industry),RafaelMartinezGordon(buildings),ShaneMcDonagh(transport),MegumiKotani(policies),FrancescoPavan(leadonproductionandtrade),AmaliaPizarro(leadonLatinAmericaandinfrastructure;innovation),RichardSimon(leadonindustry)andDenizUgur(investment).
ThedevelopmentofthisreportbenefittedfromcontributionsprovidedbythefollowingIEAcolleagues:YasminaAbdelilah,AnaAlcaldeBáscones,LeonardoColina,IlkkaHannula,MartinKueppers,GabrielLeiva,QuentinMinier,PedroNinodeCarvalho,JenniferOrtizandMirkoUliano.
ValuablecommentsandfeedbackwereprovidedbyseniormanagementandothercolleagueswithintheIEA,inparticularLauraCozzi,KeisukeSadamori,TimGould,PaoloFrankl,DennisHesseling,AlessandroBlasi,andAraceliFernandezPales.
Withgreatappreciation,wethankJoergHusarandAlejandraBernalwhoprovidedessentialsupportintheengagementwithLatinAmericastakeholders.
LizzieSayereditedthemanuscriptwhileAnnaKalistaandPer-AndersWidellprovidedessentialsupportthroughouttheprocess.
IEA.CCBY4.0.
SpecialthanksgotoProf.DetlefStoltenandhisteamatJülichSystemsAnalysis,ForschungszentrumJülich(HeidiHeinrichs,DanielRosales,ChristophWinkler,BernhardWortmann)fortheirmodelanalysisonhydrogenproductioncostsandanalyticalinputonwaterstresslevels.
GlobalHydrogenReview2024
Acknowledgements
Page|
PAGE
ThanksalsototheIEACommunicationsandDigitalOfficefortheirhelpinproducingthereport,particularlytoJethroMullen,CurtisBrainard,PoeliBojorquez,JonCuster,AstridDumond,MerveErdil,LivGaunt,GraceGordon,ClaraValloisandWonjikYang.
TheworkbenefittedfromthefinancialsupportprovidedbytheGovernmentsofCanadaandJapan.ThefollowinggovernmentshavealsocontributedtothereportthroughtheirvoluntarycontributiontotheCEMHydrogenInitiative:Australia,Austria,Canada,Finland,Germany,theEuropeanCommission,theNetherlands,Norway,theUnitedKingdomandtheUnitedStates.
Specialthanksgotothefollowingorganisationsandinitiativesfortheirvaluablecontributions:AdvancedFuelCellsTCP,HydrogenCouncil,HydrogenTCP,andInternationalPartnershipforHydrogenandFuelCellsintheEconomy(IPHE).
IEA.CCBY4.0.
Peerreviewersprovidedessentialfeedbacktoimprovethequalityofthereport.Theyinclude:NawalYousifAlhanaee,MaryamMohammedAlshamsiandAbdallaTalalAlhammadi(MinistryofEnergyandInfrastructure,UnitedArabEmirates);Abdul'AzizAliyu(GHGTCP);LaurentAntoniandNoévanHulst(IPHE);FlorianAusfelder,ThomasHildandIsabelKundler(Dechema);EstebanBarrantesVásquez(MinistryofEnvironmentandEnergy,CostaRica);FabianBarrera,MatthiasDelteil,MatthiasDeutschandLeandroJanke(AgoraEnergiewende);HamedBashiri,RobBlack,CarolineCzach,KathrynGagnon,AmandeepGarcha,EllenHandyside,AmirHanifi,OshadaMendis,CassieShang,MargaretSkwara,PhilTomlinsonandNicholeWarkotsch(NaturalResourcesCanada);LionelBoillot(EUCleanHydrogenPartnership);DavidBolsmanandAlfredMosselaar(RVO,Netherlands);PaolaBrunetto(Enel);FitzgeraldCantero(OLADE);FlorimarCeballosandRocíoValero(HydrogenTCP);PingChen(DalianInstituteofChemicalPhysics);TudorConstantinescu(DGENER,EuropeanCommission);Anne-SophieCorbeau(CenteronGlobalEnergyPolicy,ColumbiaUniversity);LindaDempsey(CFIndustries);LuisDiazgranadosandWouterVanhoudt(Hinicio);RobertDickinson,StuartWalshandChanglongWang(MonashUniversity);JoeDoleschal-Ridnell,DorisFujiandShirleyOliveira(BP);RobertFischer(SWEA);TudorFlorea(MinistryofEcologicalTransition,France);AlexandruFloristean(Hy24);DanielFraile(HydrogenEurope);MatiasGarcía(MinistryofEnergy,Chile);EricC.Gaucher(LavoisierH2Ceoconsult);DolfGielen,CarolinaLopezRochaandSimonaSulikova(WorldBank);CelineLeGoazigo(WBCSD);JeffreyGoldmeerandKanikaTayal(GEVernova);MariaJoseGonzalezandMartínScarone(MinistryofIndustry,EnergyandMines,Uruguay);MarineGorner,JulianHoelzenandFrédériqueRigal(Airbus);PatrickGraichen(Independent);EmileHerben(Yara);StephanHerbstandKoichiNumata(Toyota);YoshinariHiki(ENEOS);KenjiIshizawa(IHICorporation);SteveJames(MinistryofBusiness,Innovation&Employment,NewZealand);NicolasJensen(TES);ConnorKerrandTJKirk(RockyMountainInstitute);IlhanKim(MinistryofTrade,
IEA.CCBY4.0.
IndustryandEnergy,Korea);YoshikazuKobayashi(TheInstituteofEnergyEconomics,Japan);LeifChristianKr?ger(ThyssenkruppNucera);ThomasKwan(SchneiderElectric);PierreLaboué(FranceHydrogène);MartinLambert(OxfordInstituteforEnergyStudies);WilcovanderLans(PortofRotterdamAuthority);FranciscoLaveron(Iberdrola);FranzLehnerandJanStelter(NOWGmbH);MichaelLeibrandt(FederalMinistryforEconomicAffairsandClimateAction,Germany);PaulLuccheseandJulieMougin(CEA);AlbertoDiLullo,AndreaDiStefanoandAndreaPisano(Eni);ConstanzaMeneses(H2LAC);MatteoMicheliandAndreaTriki(GermanEnergyAgency);SusanaMoreira(H2Global-HINT.Co);PatriciaNaccache(MinistryofMinesandEnergyofBrazil);MasashiNagai(Chiyoda);MotohikoNishimura(KawasakiHeavyIndustries);MaríaTeresaNonayDomingo(Enagás);ArielPérez(Hychico);CédricPhilibert(Independent);AndrewPurvis(WorldSteelAssociation);CarlaRobledoandDouweRoest(MinistryofEconomicAffairsandClimate,theNetherlands);AgustínRodríguezRiccio(Topsoe);XavierRousseau(Snam);SunitaSatyapal,JacobEnglander,MarcMelainaandNehaRustagi(DepartmentofEnergy,UnitedStates);SophieSauerteig(DepartmentforEnergySecurityandNetZero,UnitedKingdom);RobertSchouwenaar(Shell);GuillaumeDeSmedt(AirLiquide);MichaelSmith(DepartmentofClimateChange,Energy,theEnvironmentandWater,Australia);MatthijsSoede(DGR&I,EuropeanCommission);UrszulaSzalkowska(EcoEngineers);KenjiTakahashi(JERA);AndreiTchouvelev(ISO);DenisThomas(AccelerabyCummins);TatianaVilarinhoFranco(FortescueFutureIndustries);MarcelWeeda(TNO);JoeWilliams(GreenHydrogenOrganisation);JuanCamiloZapata(MinistryofMinesandEnergy,Colombia).
GlobalHydrogenReview2024
Tableofcontents
Page|
PAGE
Tableofcontents
Executivesummary 9
Recommendations 14
GlobalHydrogenReviewSummaryProgress 16
Chapter1.Introduction 17
Overview 17
TheCEMHydrogenInitiative 18
Chapter2.Hydrogendemand 20
Highlights 20
Overviewandoutlook 21
Refining 28
Industry 32
Transport 37
Buildings 53
Electricitygeneration 54
Chapter3.Hydrogenproduction 59
Highlights 59
Overviewandoutlook 60
Electrolysis 66
FossilfuelswithCCUS 78
Comparisonofdifferentproductionroutes 81
Emergingproductionroutes 94
Hydrogen-basedfuelsandfeedstock 99
Chapter4.Tradeandinfrastructure 104
Highlights 104
Overview 105
Statusandoutlookofhydrogentrade 105
Statusandoutlookofhydrogeninfrastructure 113
Chapter5.Investment,financeandinnovation 135
Highlights 135
Investmentinthehydrogensector 136
Innovationinhydrogentechnologies 150
Chapter6.Policies 163
Highlights 163
Overview 164
IEA.CCBY4.0.
Strategiesandtargets 166
IEA.CCBY4.0.
Demandcreation 172
Mitigationofinvestmentrisks 178
PromotionofRD&D,innovationandknowledge-sharing 190
Certification,standards,regulations 194
Chapter7.GHGemissionsofhydrogenanditsderivatives 203
Highlights 203
Overview 204
Systemboundariesandscopeofemissions 206
Emissionsintensitiesofhydrogenproductionroutes 208
Emissionsintensitiesofammoniaproductionroutes 215
Emissionsintensitiesof(re)conversionandshippingofhydrogencarriers 216
Emissionsintensityofcarbon-containinghydrogen-basedfuels 223
EffectoftemporalcorrelationonGHGemissions 230
Chapter8.LatinAmericainfocus 234
Highlights 234
Unlockingthepotentialoflow-emissionshydrogeninLatinAmericaandtheCaribbean 235
Overview 237
Low-emissionshydrogenproduction 242
Low-emissionshydrogendemand 247
Movingtowardsimplementation 269
Annex 287
Explanatorynotes 287
Abbreviationsandacronyms 289
GlobalHydrogenReview2024
Executivesummary
Page|
PAGE
Executivesummary
Moreprojectsandmorefinalinvestmentdecisions,butsetbackspersist
Globalhydrogendemandreached97Mtin2023,anincreaseof2.5%comparedto2022.Demandremainsconcentratedinrefiningandthechemicalsector,andisprincipallycoveredbyhydrogenproducedfromunabatedfossilfuels.Asinpreviousyears,low-emissionshydrogenplayedonlyamarginalrole,withproductionoflessthan1Mtin2023.However,low-emissionshydrogenproductioncouldreach49Mtpaby2030basedonannouncedprojects,almost30%morethanwhentheGlobalHydrogenReview2023wasreleased.Thisstronggrowthhasbeenmostlydrivenbyelectrolysisprojects,withannouncedelectrolysiscapacityamountingtoalmost520GW.Thenumberofprojectsthathavereachedafinalinvestmentdecision(FID)isalsogrowing:AnnouncedproductionthathastakenFIDdoubledcomparedwithlastyeartoreach3.4Mtpa,representingafivefoldincreaseontoday’sproductionby2030.Thisissplitroughlyevenlybetweenelectrolysis(1.9Mtpa)andfossilfuelswithcarboncapture,utilisationandstorage(CCUS)(1.5Mtpa).
HydrogenproductionfromfossilfuelswithCCUShasgainedgroundoverthepastyear–althoughthetotalpotentialproductionfromannouncedprojectsgrewonlymarginallycomparedwithlastyear,therewereseveralFIDsforpreviouslyannouncedlarge-scaleprojects,allofwhicharelocatedinNorthAmericaandEurope.Asaresult,thepotentialproductionin2030fromprojectsusingfossilfuelswithCCUSthathavetakenFIDmorethandoubledinthelastyear,from
0.6MtpainSeptember2023to1.5Mtpatoday.
IEA.CCBY4.0.
Overall,thisisnoteworthyprogressforanascentsector,butmostofthepotentialproductionisstillinplanningoratevenearlierstages.Forthefullprojectpipelinetomaterialise,thesectorwouldneedtogrowatanunprecedentedcompoundannualgrowthrateofover90%from2024until2030,wellabovethegrowthexperiencedbysolarPVduringitsfastestexpansionphases.Severalprojectshavefaceddelaysandcancellations,whichareputtingatriskasignificantpartoftheprojectpipeline.Themainreasonsincludeuncleardemandsignals,financinghurdles,delaystoincentives,regulatoryuncertainties,licensingandpermittingissuesandoperationalchallenges.
GlobalHydrogenReview2024
Executivesummary
Mapofannouncedlow-emissionshydrogenproductionprojects,2024
Source:IEA
HydrogenProjectsdatabase
(October2024).
Chinaandelectrolysers–thesequeltosolarPVandbatteries?
AnnouncedelectrolysercapacitythathasreachedFIDnowstandsat20GWglobally,ofwhich6.5GWreachedFIDoverthelast12monthsalone.Chinaisstrengtheningitsleadership,accountingformorethan40%ofglobalFIDsincapacitytermsoverthesameperiod.China’sfront-runningpositionisbackedbyitsstrengthinthemassmanufacturingofcleanenergytechnologies:itishometo60%ofglobalelectrolysermanufacturingcapacity.China’scontinuedexpansionofmanufacturingcapacityisexpectedtodrivedownelectrolysercosts,ashasoccurredwithsolarPVandbatterymanufacturinginthepast.Moreover,severallargeChinesemanufacturersofsolarpanelshaveenteredthebusinessofmanufacturingelectrolysers,andtodaytheyaccountforaroundone-thirdofChina’selectrolysermanufacturingcapacity.However,otherregionsarealsosteppingupefforts:inEurope,FIDsforelectrolysisprojectsquadrupledoverthelastyeartoreachmorethan2GW,whileIndiahasemergedasoneofthekeyplayersthankstoasingleFIDfor1.3GW.
IEA.CCBY4.0.
PAGE|10
GlobalHydrogenReview2024
Executivesummary
Technologyinnovationismakingheadway,withsignspointingtoacceleratedprogressinthenearterm
GovernmentinvestmentinhydrogentechnologyRD&Dhasbeengrowingsince2016,andthiseffortisstartingtobearfruit.Todate,progresshasoccurredmostlyonthesupplyside,andnumeroustechnologiesareeitheralreadycommerciallyavailableorclosetothispoint.Promisingresultsarealsobeingseenforend-usetechnologies,withseveralapplicationsinindustryandelectricitygenerationreachingdemonstrationstage,aswellassignificantprogressintransportapplications,particularlyintheshippingsector.Inaddition,thenumberofpatentapplicationsleaptup47%in2022,withmostofthegrowthcomingfromtechnologiesthatareprimarilymotivatedbyclimatechangeconcerns.IncreasedactivityaroundpatentingsuggeststhatadditionalpublicfundingforR&Dandgrowingconfidenceinfuturemarketopportunities,backedbysupportivepolicies,arestimulatingmorenewideasandproductdesignswithcommercialpotential.
Low-emissionshydrogenwillremainexpensiveintheshortterm,butcostsareexpectedtofallsignificantly
Low-emissionshydrogenisanemergingsectorand,assuch,thereisuncertaintyaboutcosts.Today’selectrolysercostshavebeenrevisedupwardsforthisreport,basedonnewlyavailabledatafrommoreadvancedprojects.Thefuturecostevolutionwilldependonnumerousfactors,suchastechnologydevelopment,andparticularlyonthelevelandpaceofdeployment.WiththedeploymentseenintheIEA’sNetZeroEmissionsby2050Scenario(NZEScenario),thecostoflow-emissionshydrogenproductionfromrenewableelectricityfallstoUSD2-9/kgH2by2030–halfoftoday’svalue–withthecostgapwithunabatedfossil-basedproductionshrinkingfromUSD1.5-8/kgH2todaytoUSD1-3/kgH2by2030.DeploymentlevelsintheStatedPoliciesScenario(whichconsidersexistingpoliciesonly)meanthatthecostrangewouldfallonlyaround30%.Asnaturalgaspricesfallinmanyregions,low-emissionshydrogenproductionfromnaturalgaswithCCUSisalsosettoexperiencecostreductions.
Costreductionswillbenefitallprojects,buttheimpactonthecompetitivenessofindividualprojectswillvary.Forexample,fulldevelopmentoftheentireelectrolyserprojectpipelineofalmost520GWwouldachievesimilarglobalcostreductionsasintheNZEScenario.InChina,globaldeploymentatsuchalevelwouldmeanthatthevastmajorityoftheproductionfromitscurrentelectrolyserprojectpipeline(1Mtpa)wouldbecheaperthanhydrogenproducedfromunabatedcoal.Globally,by2030,morethan5Mtpacouldbeproducedatacostcompetitivewithproductionfromunabatedfossilfuels,andupto12MtpawithacostpremiumofUSD1.5/kgH2.
IEA.CCBY4.0.
PAGE|11
GlobalHydrogenReview2024
Executivesummary
Thiscostgapwillremainanimportantchallengeintheshorttermforprojectdevelopers,butforfinalproductsforwhichhydrogenisanintermediatefeedstock,theimpactislikelytobemanageableinmanycases.Thecostpremiumoflow-emissionshydrogenproductiondecreasesalongthevaluechain,meaningthatconsumersoftenseeonlyamodestpriceincreaseinfinalproducts.Forexample,usingsteelproducedwithrenewablehydrogentodayintheproductionofelectricvehicles(EVs)wouldincreasethetotalpriceofanEVbyaround1%.
Progressisbeingmadeincreatingdemandforlow-emissionshydrogen,butthisstillneedstoscaleup
Effortstostimulatedemandforlow-emissionshydrogen(andhydrogen-basedfuels)arenowgainingtractionasgovernmentsbeginimplementingkeypolicies(suchasCarbonContractsforDifferenceinGermanyandtheEUmandatesinaviationandshipping).Thesemeasureshavealsotriggeredactionontheindustryside,withagrowingnumberofofftakeagreementssignedandthelaunchoftenderstopurchaselow-emissionshydrogen.However,theoverallscaleoftheseeffortsremainsinadequateforhydrogentocontributetomeetingclimategoals.
Policiesandtargetsforhydrogendemandsetbygovernmentsadduptoaround11Mtin2030,nearly3Mtlowerthanlastyearduetothedownwardrevisionsofsometargetsforhydrogenuseinindustry,transportandpowergeneration.Yettheamountoflow-emissionshydrogenproductionthathastakenFID(3.4Mtpa)orisalreadyoperational(0.7Mtpa),at4Mtpa,iswellbelowthatlevel.Thegapconstitutesacallforactiontoindustryandgovernmentstofacilitateofftakeagreementsthatcanhelpunlockinvestmentonthesupplyside.
Atthesametime,governmentpoliciesandtargetsfordemandarewellbehindtheproductiontargetsbygovernments(whichaddupto43Mtpain2030)andareevenlowerthanthepotentialsupplythatcouldbeachievedfromannouncedprojects(49Mtpa).Policymeasuresarestillinsufficienttocreatethelevelofdemandneededtoscaleupproductiontomeetgovernmentexpectations.Inaddition,somemoreambitiousactions(liketheEUtargetsinindustryapplicationsortherefiningquotasinIndia)havenotyetbeentranslatedintonationallegislation.Moreover,fromthearoundUSD100billionofpolicysupportforlow-emissionshydrogenadoptionannouncedbygovernmentsoverthepastyear,supportonthesupplysideis50%largerthanonthedemandside.Strongergovernmentactionwillbeneededtostimulatedemandforlow-emissionshydrogenasanessentialrequirementtounderpininvestmentsonthesupplyside.Industrialhubs,wherelow-emissionshydrogencouldreplacetheexistinglargedemandforhydrogenmettodaybyunabatedfossilfuels,remainanimportantuntappedopportunityforgovernmentstostimulatedemand.
IEA.CCBY4.0.
PAGE|12
GlobalHydrogenReview2024
Executivesummary
Thenextstepsforcertificationandmutualrecognition
Governmentsareacceleratingthedevelopmentofregulationsontheenvironmentalattributesoflow-emissionshydrogen,particularlyregardinggreenhousegas(GHG)emissions.Clearandpredictableregulationscanstrengthencertaintyforlong-terminvestments.Yettheseframeworks,andtheassociatedcertificationschemes,remainunalignedacrossdifferentregions,creatingpotentialformarketfragmentation.Inresponse,atCOP28,37governmentscommittedtomutualrecognitionofnationalcertificationschemes,whileLatinAmericalaunched“CertHiLAC”,aregionalcertificationframework.Inaddition,theInternationalOrganizationforStandardization(ISO)hasreleasedamethodologyfordeterminingGHGemissionsassociatedwithhydrogenproduction,transportandconversion/reconversion.Thiswillbethebasisforafullstandardexpectedby2025or2026,whichcouldserveasacommonmethodologytoenablethemutualrecognitionofcertificates.However,somequestionsrelatedtotheassessmentofGHGemissionsinhydrogensupplychainsremainunresolved,suchashowtoaccountforemissionsfromtheconstructionandmanufacturingofproductionassets.Inthecaseoffossil-basedproduction,thereisaneedforbetterdataonupstreamandmidstreamemissionsoffossilfuelsupplyavailableinnationalinventoriesinordertoensurerobustassessmentoftheGHGemissionsassociatedwiththeseproductionroutes.
HydrogencanbeanopportunityforLatinAmericainthenewenergyeconomy,butisfacingchallenges
Thisyear’sreportincludesaspecialfocusonLatinAmericaandtheCaribbean,followingthelaunchoftheIEA’sLatinAmericaEnergyOutlookin2023.LatinAmericaiswell-positionedtoemergeasamajorproduceroflow-emissionshydrogen,capitalisingonitsabundantnaturalandrenewableenergyresourcesandlargelydecarbonisedelectricitymix.Basedonannouncedprojects,by2030,LatinAmericacouldproducemorethan7Mtpaofhydrogenwithacarbonintensitybelow3kgCO2-eq/kgH2(3-4timeslowerthanusingunabatednaturalgas),inlinewiththerequirementsofseveralexistingregulationsaroundtheworld(e.g.theEUTaxonomy,Japan’sHydrogenSocietyPromotionActandtheUSCleanHydrogenProductionStandard).However,achievingthispotentialinfullwouldrequireasignificantincreaseinelectricitygenerationcapacity–equivalentto20%oftheregion’scurrentpoweroutput–andsubstantialinvestmentsinenablinginfrastructure,suchastransmissionlines.
ManyLatinAmericancountriesalreadyhavehydrogenstrategieswithastrongfocusonexportopportunities.However,theseplansmayneedtobeupdatedinlightofuncertaintyaboutthesizeoftheglobalhydrogenmarket.Atthegloballevel,therehasbeennogrowthinannouncedprojectslinkedtotradeofhydrogenandhydrogen-basedfuelsinthepastyear,suggestingthatprojectdevelopers
IEA.CCBY4.0.
PAGE|13
GlobalHydrogenReview2024
Executivesummary
haveinsteadfocusedondomesticopportunities.InthecaseofLatinAmerica,theseopportunitiesaremostlyinrefiningandammoniaproduction,whichofferimmediatelarge-scaleapplications.Inthecaseofammonia,developingdomesticproductioncapacitieswouldhelptoreduceimportdependencyforfertilisersinaregionwhereagriculturemakesasignificantcontributiontonationalgrossdomesticproduct.
Asthemarketdevelops,newapplicationsinsteel,shippingandaviationwillemerge,togetherwiththeestablishmentofhydrogenhubs.Thesehubscanopenanopportunitytoscaleuphydrogenuseandproductionfordomesticneeds,whilealsoprovidingtheopportunitytoexporthydrogen-basedfuels,aswellasmaterialsproducedwithlow-emissionshydrogen,suchashotbriquettediron,allowingcountriesthataretodaylargeexportersofironore,likeBrazil,todevelopnewindustrialcapacitiesandscaleupinthevaluechain.Aphasedapproachtosupplyintheregion,startingwithsmaller-scaleprojects,willhelpmitigaterisks,reducecapitalinvestment,andprovidevaluableexperienceforscalingupinthefuture.Infrastructureplanninganddevelopment,especiallyinlong-leadprojectslikepowertransmission,shouldbeginimmediatelytosupportfuturehydrogenproduction.
Recommendations
Acceleratedemandcreationforlow-emissionshydrogenbyleveragingindustrialhubsandpublicprocurement
Governmentsshouldtakebolderactiontostimulatedemandforlow-emissionshydrogen.Theimplementationofpoliciessuchasquotas,mandatesandcarboncontractsfordifferencehasalreadystarted,butremainslimitedingeographicalcoverageandscale.Governmentscancapitaliseontheopportunityofferedbyexistinghydrogenusersandhigh-valuesectorssuchassteel,shippingandaviation,whichareoftenco-locatedinindustrialhubs.Poolingdemandinthesehubscancreatescaleandreduceofftakerisksforproducers.Additionally,makinguseofpublicprocurementforfinalproductsthatconsumelow-emissionshydrogenintheirproduction,andencouragingthedevelopmentofmarketswhereconsumersare
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB32/T 3798-2020智能交通數據分發共享實施指南
- DB32/T 3762.15-2021新型冠狀病毒檢測技術規范第15部分:血清/血漿IgM和IgG抗體磁微粒化學發光法檢測程序
- DB32/T 3761.35-2021新型冠狀病毒肺炎疫情防控技術規范第35部分:醫院手術室
- DB32/T 3670-2019律師政府法律顧問服務導則
- DB32/T 3521-2019“不見面審批”服務規范
- DB32/T 3506-2019青年創業培訓服務規范
- DB31/T 955-2015豬圓環病毒2a/2b亞型實時熒光PCR檢測和分型方法
- DB31/T 493-2020屋頂綠化技術規范
- DB31/T 320-2020工業開發區建設規范
- DB31/T 1189.2-2019車載緊急報警系統第2部分:車輛應急救援平臺技術要求和測試方法
- 《鐵路軌道維護》課件-扣件螺栓涂油作業
- 初三班級學生中考加油家長會課件
- 多圖中華民族共同體概論課件第十一講 中華一家與中華民族格局底定(清前中期)根據高等教育出版社教材制作
- 可感染人類的高致病性病原微生物菌(毒)種或樣本運輸管理規定
- 2022年全民健康生活方式行動工作計劃
- PVDF乳液與懸浮聚合工藝
- 高三物理一輪復習策略及建議.PPT
- 光伏發電項目并網調試方案
- 面試考核評分表
- 地溝更換管線專項施工方案完整
- 公司組織架構圖模板可編輯
評論
0/150
提交評論