2025年浙科版高一數學下冊月考試卷_第1頁
2025年浙科版高一數學下冊月考試卷_第2頁
2025年浙科版高一數學下冊月考試卷_第3頁
2025年浙科版高一數學下冊月考試卷_第4頁
2025年浙科版高一數學下冊月考試卷_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

…………○…………內…………○…………裝…………○…………內…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年浙科版高一數學下冊月考試卷601考試試卷考試范圍:全部知識點;考試時間:120分鐘學校:______姓名:______班級:______考號:______總分欄題號一二三四總分得分評卷人得分一、選擇題(共8題,共16分)1、點O在△ABC所在平面上,若則點O是△ABC的()

A.三條中線交點。

B.三條高線交點。

C.三條邊的中垂線交點。

D.三條角分線交點。

2、某路段的雷達測速區檢測點,對過往汽車的車速進行檢測所得結果進行抽樣分析,并繪制如圖所示的時速(單位km/h)頻率分布直方圖,若在某一時間內有200輛汽車通過該檢測點,請你根據直方圖的數據估計在這200輛汽車中時速超過65km/h的約有()A.輛B.輛C.輛D.輛3、【題文】已知函數則函數的零點個數為()A.B.C.D.4、【題文】已知直線與直線平行,則的值為()A.0或3或B.0或3C.3或D.0或5、【題文】已知都是實數,且則“”是“”成立的()A.充分不必要條件B.必要不充分條件C.充分必要條件D.不充分也不必要條件6、已知a,b是空間中兩不同直線,α,β是空間中兩不同平面,下列命題中正確的是()A.若直線a∥b,b?α,則a∥αB.若平面α⊥β,a⊥α,則a∥βC.若平面α∥β,a?α,b?β,則a∥bD.若a⊥α,b⊥β,a∥b,則α∥β7、已知球O的內接正四面體ABCD的棱長為則B、C兩點的球面距離是()A.arccos(﹣)B.arccos(﹣)C.arccos(﹣)D.arccos(﹣)8、已知P是邊長為2的正△ABC的邊BC上的動點,則()A.最大值為8B.是定值6C.最小值為2D.是定值2評卷人得分二、填空題(共8題,共16分)9、已知集合B={x∈Z|-3<2x-1<3},用列舉法表示集合B,則是____.10、函數的單調減區間是____.11、已知函數當時是增函數,當時是減函數,則_________12、【題文】已知定義在R上的函數滿足條件且則____.13、【題文】一批設備價值1萬元,由于使用磨損,每年比上一年價值降低50%,則3年后這批設備的價值為★(萬元)(用數字作答)14、設定義在R上的奇函數f(x)在(0,+∞)上為增函數,且f(2)=0,則不等式f(x)<0的解集為____.15、冪函數f(x)=(m2-5m+7)xm-2為奇函數,則m=______.16、設x,y滿足不等式組若z=ax+by(a>0,b>0)的最大值為4,則的最小值為______..評卷人得分三、作圖題(共6題,共12分)17、如圖A、B兩個村子在河CD的同側,A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現在要在河邊CD上建一水廠,向A、B兩村送自來水,鋪設管道費用為每千米2000元,請你在CD上選擇水廠位置O,使鋪設管道的費用最省,并求出其費用.18、作出函數y=的圖象.19、畫出計算1++++的程序框圖.20、請畫出如圖幾何體的三視圖.

21、某潛艇為躲避反潛飛機的偵查,緊急下潛50m后,又以15km/h的速度,沿北偏東45°前行5min,又以10km/h的速度,沿北偏東60°前行8min,最后擺脫了反潛飛機的偵查.試畫出潛艇整個過程的位移示意圖.22、已知簡單組合體如圖;試畫出它的三視圖(尺寸不做嚴格要求)

評卷人得分四、綜合題(共1題,共5分)23、已知:甲;乙兩車分別從相距300(km)的M、N兩地同時出發相向而行;其中甲到達N地后立即返回,圖1、圖2分別是它們離各自出發地的距離y(km)與行駛時間x(h)之間的函數圖象.

(1)試求線段AB所對應的函數關系式;并寫出自變量的取值范圍;

(2)當它們行駛到與各自出發地距離相等時,用了(h);求乙車的速度;

(3)在(2)的條件下,求它們在行駛的過程中相遇的時間.參考答案一、選擇題(共8題,共16分)1、B【分析】

∵∴∴

同理.

因此點O是△ABC的三條高線的交點.

故選B.

【解析】【答案】利用向量垂直與數量積的關系即可得出.

2、D【分析】試題分析:由頻率分布直方圖知速超過65km/h的頻率為:因此200輛汽車中時速超過65km/h的約有:(輛).考點:統計中的頻率分布直方圖.【解析】【答案】D.3、C【分析】【解析】

試題分析:或所以函數的零點個數為3個.

考點:零點的求法.【解析】【答案】C4、D【分析】【解析】當時,兩直線為平行;

當時,若兩直線平行,則解得故選D【解析】【答案】D5、B【分析】【解析】略【解析】【答案】B6、D【分析】【解答】解:若直線a∥b,b?α;則a∥α或a?α,故A不對;

若平面α⊥β;a⊥α,則a∥β或a?β,故B不對;

若平面α∥β,a?α,b?β,則a∥b或a、b是異面直線;故C不對;

根據垂直于同一條直線的兩個平面平行;可得D正確;

故選:D.

【分析】由條件利用直線和平面平行的判定定理、性質定理,直線和平面垂直的判定定理、性質定理,逐一判斷各個選項是否正確,從而得出結論.7、A【分析】【解答】解:如圖,將四面體補成正方體,則正方體的棱長是正方體的對角線長為:2;

正四面體的外接球的半徑為:1;設球心為O.

∴cos∠AOB==﹣

∴∠AOB=arccos(﹣);

外接球球面上A、B兩點間的球面距離為:arccos(﹣).

故選:A.

【分析】由題意求出外接球的半徑,然后求出∠AOB的大小,即可求解其外接球球面上A、B兩點間的球面距離.8、B【分析】解:設===t

則=-=-

2=4=2?=2×2×cos60°=2

=+=+t﹙-﹚=﹙1-t﹚+t+=+

?﹙+﹚=﹙﹙1-t﹚+t﹚?﹙+﹚=﹙1-t﹚2+[﹙1-t﹚+t]+t2

=﹙1-t﹚×4+2+t×4=6

故選B.

先設===t然后用和表示出再由=+將==t代入可用和表示出最后根據向量的線性運算和數量積運算可求得的值;從而可得到答案.

本題主要考查向量的數量積運算和向量的線性運算.高考對向量的考查一般不會太難,以基礎題為主,而且經常和三角函數練習起來考查綜合題,平時要多注意這方面的練習.【解析】【答案】B二、填空題(共8題,共16分)9、略

【分析】

∵-3<2x-1<3;且x∈Z;

∴-1<x<2;且x∈Z;

x=0;1;

故答案為:{0;1}.

【解析】【答案】根據-3<2x-1<3;且x∈Z,解此絕對值不等式,得到-1<x<2,且x∈Z,然后寫出滿足條件的整數x的值即可.

10、略

【分析】

∵x2+2x-3≥0∴原函數的定義域為:(-∞;-3]∪[1,+∞)

令z=x2+2x-3,原函數可表示為:z=x2+2x-3

∴單調減區間為:(-∞;-3]

故答案為:(-∞;-3].

【解析】【答案】先求出函數的定義域;再由復合函數判斷單調性的同增異減性質判斷即可。

11、略

【分析】【解析】試題分析:由題意可知當時是增函數,當時是減函數,所以對稱軸為x=-1,所以考點:考查二次函數的單調性和對稱性.【解析】【答案】-1612、略

【分析】【解析】

試題分析:由可知,所以函數是周期為3的周期函數,

考點:1.抽象函數及其應用;2.函數的周期性【解析】【答案】13、略

【分析】【解析】略【解析】【答案】14、(﹣∞,﹣2)∪(0,2)【分析】【解答】解:如圖所示;不等式f(x)<0的解集為。

(﹣∞;﹣2)∪(0,2).

故答案為:(﹣∞;﹣2)∪(0,2).

【分析】利用奇函數的對稱性、單調性即可得出.15、略

【分析】解:∵f(x)是冪函數。

∴m2-5m+7=1解得m=2或m=3

當m=2時;f(x)=1(x≠0)不是奇函數。

當m=3時;f(x)=x是奇函數。

故答案為:3

利用冪函數的定義:系數為1列出方程求出m值;求出f(x)的解析式,驗證奇函數.

本題考查冪函數的定義:形如y=xα的函數為冪函數.【解析】316、略

【分析】解:由題意作出其平面區域;

由解得;x=4,y=6;

又∵a>0,b>0;

故當x=4,y=6時目標函數z=ax+by取得最大值;

即4a+6b=4;

即a+b=1;

故=()(a+b)

=1+1++≥2+2×=4;

(當且僅當a=b=時;等號成立);

則的最小值為4.

故答案為:4.

由題意作出其平面區域,從而由線性規劃可得a+b=1;從而化簡利用“1”的代換;從而利用基本不等式求解即可.

本題考查了簡單線性規劃,作圖要細致認真,同時考查了基本不等式的應用,屬于中檔題.【解析】4三、作圖題(共6題,共12分)17、略

【分析】【分析】作點A關于河CD的對稱點A′,當水廠位置O在線段AA′上時,鋪設管道的費用最省.【解析】【解答】解:作點A關于河CD的對稱點A′;連接A′B,交CD與點O,則點O即為水廠位置,此時鋪設的管道長度為OA+OB.

∵點A與點A′關于CD對稱;

∴OA′=OA;A′C=AC=1;

∴OA+OB=OA′+OB=A′B.

過點A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;

∴在Rt△A′BE中,A′B==5(千米);

∴2000×5=10000(元).

答:鋪設管道的最省費用為10000元.18、【解答】圖象如圖所示。

【分析】【分析】描點畫圖即可19、解:程序框圖如下:

【分析】【分析】根據題意,設計的程序框圖時需要分別設置一個累加變量S和一個計數變量i,以及判斷項數的判斷框.20、解:如圖所示:

【分析】【分析】由幾何體是圓柱上面放一個圓錐,從正面,左面,上面看幾何體分別得到的圖形分別是長方形上邊加一個三角形,長方形上邊加一個三角形,圓加一點.21、解:由題意作示意圖如下;

【分析】【分析】由題意作示意圖。22、

解:幾何體的三視圖為:

【分析】【分析】利用三視圖的作法,畫出三視圖即可.四、綜合題(共1題,共5分)23、略

【分析】【分析】(1)首先設線段AB所表示的函數的解析式為y=kx+b,根據題意知道函數經過(3,300),(;0)兩點,利用待定系數法即可確定函數的解析式和自變量的取值范圍;

(2)首先可以判定x=在3<x≤中,然后把x=代入(1)的函數解析式y=-80x+540中可以求出甲所走的路程;同時也知道了乙的路程,最后利用速度公式即可求解;

(3)首先確定依有兩次相遇,①當0≤x≤3時,100x+40x=300,②當3<x≤時,(540-80x)+40x=300,分別解這兩個方程即可求解.【解析】【解答】解:(1)設線段AB所表示的函數的解析式為y=kx+b;

把(3,300),(,0)代入其中得;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論