




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省淮安市淮陰區淮陰中學2025屆高三第一次模擬考試數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,四邊形為平行四邊形,為中點,為的三等分點(靠近)若,則的值為()A. B. C. D.2.某幾何體的三視圖如圖所示,則此幾何體的體積為()A. B.1 C. D.3.已知正項等比數列中,存在兩項,使得,,則的最小值是()A. B. C. D.4.已知為圓的一條直徑,點的坐標滿足不等式組則的取值范圍為()A. B.C. D.5.已知集合,則=()A. B. C. D.6.已知,,,則的大小關系為()A. B. C. D.7.已知,,則()A. B. C. D.8.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.9.設拋物線上一點到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.310.設集合則()A. B. C. D.11.函數的圖象的大致形狀是()A. B. C. D.12.已知雙曲線C:=1(a>0,b>0)的右焦點為F,過原點O作斜率為的直線交C的右支于點A,若|OA|=|OF|,則雙曲線的離心率為()A. B. C.2 D.+1二、填空題:本題共4小題,每小題5分,共20分。13.正方體中,是棱的中點,是側面上的動點,且平面,記與的軌跡構成的平面為.①,使得;②直線與直線所成角的正切值的取值范圍是;③與平面所成銳二面角的正切值為;④正方體的各個側面中,與所成的銳二面角相等的側面共四個.其中正確命題的序號是________.(寫出所有正確命題的序號)14.若冪函數的圖象經過點,則其單調遞減區間為_______.15.已知直角坐標系中起點為坐標原點的向量滿足,且,,,存在,對于任意的實數,不等式,則實數的取值范圍是______.16.有編號分別為1,2,3,4,5的5個紅球和5個黑球,從中隨機取出4個,則取出球的編號互不相同的概率為_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若函數,求的極值;(2)證明:.(參考數據:)18.(12分)為提供市民的健身素質,某市把四個籃球館全部轉為免費民用(1)在一次全民健身活動中,四個籃球館的使用場數如圖,用分層抽樣的方法從四場館的使用場數中依次抽取共25場,在中隨機取兩數,求這兩數和的分布列和數學期望;(2)設四個籃球館一個月內各館使用次數之和為,其相應維修費用為元,根據統計,得到如下表的數據:x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求與的回歸直線方程;②叫做籃球館月惠值,根據①的結論,試估計這四個籃球館月惠值最大時的值參考數據和公式:,19.(12分)班主任為了對本班學生的考試成績進行分析,決定從本班24名女同學,18名男同學中隨機抽取一個容量為7的樣本進行分析.(1)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可,不必計算出結果)(2)如果隨機抽取的7名同學的數學,物理成績(單位:分)對應如下表:學生序號1234567數學成績60657075858790物理成績70778085908693①若規定85分以上(包括85分)為優秀,從這7名同學中抽取3名同學,記3名同學中數學和物理成績均為優秀的人數為,求的分布列和數學期望;②根據上表數據,求物理成績關于數學成績的線性回歸方程(系數精確到0.01);若班上某位同學的數學成績為96分,預測該同學的物理成績為多少分?附:線性回歸方程,其中,.768381252620.(12分)在中,內角的對邊分別是,滿足條件.(1)求角;(2)若邊上的高為,求的長.21.(12分)已知函數,其中為實常數.(1)若存在,使得在區間內單調遞減,求的取值范圍;(2)當時,設直線與函數的圖象相交于不同的兩點,,證明:.22.(10分)已知動圓Q經過定點,且與定直線相切(其中a為常數,且).記動圓圓心Q的軌跡為曲線C.(1)求C的方程,并說明C是什么曲線?(2)設點P的坐標為,過點P作曲線C的切線,切點為A,若過點P的直線m與曲線C交于M,N兩點,則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
使用不同方法用表示出,結合平面向量的基本定理列出方程解出.【詳解】解:,又解得,所以故選:D【點睛】本題考查了平面向量的基本定理及其意義,屬于基礎題.2、C【解析】該幾何體為三棱錐,其直觀圖如圖所示,體積.故選.3、C【解析】
由已知求出等比數列的公比,進而求出,嘗試用基本不等式,但取不到等號,所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當,時;當,時;當,時,,所以最小值為.故選:C.【點睛】本題考查等比數列通項公式基本量的計算及最小值,屬于基礎題.4、D【解析】
首先將轉化為,只需求出的取值范圍即可,而表示可行域內的點與圓心距離,數形結合即可得到答案.【詳解】作出可行域如圖所示設圓心為,則,過作直線的垂線,垂足為B,顯然,又易得,所以,,故.故選:D.【點睛】本題考查與線性規劃相關的取值范圍問題,涉及到向量的線性運算、數量積、點到直線的距離等知識,考查學生轉化與劃歸的思想,是一道中檔題.5、D【解析】
先求出集合A,B,再求集合B的補集,然后求【詳解】,所以.故選:D【點睛】此題考查的是集合的并集、補集運算,屬于基礎題.6、A【解析】
根據指數函數與對數函數的單調性,借助特殊值即可比較大小.【詳解】因為,所以.因為,所以,因為,為增函數,所以所以,故選:A.【點睛】本題主要考查了指數函數、對數函數的單調性,利用單調性比較大小,屬于中檔題.7、D【解析】
分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎題.8、D【解析】
結合三視圖可知,該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,則上半部分的半個圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運算求解能力,屬于中檔題.9、A【解析】
分析:題設的直線與拋物線是相離的,可以化成,其中是點到準線的距離,也就是到焦點的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準線的距離,故為到焦點的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點睛:拋物線中與線段的長度相關的最值問題,可利用拋物線的幾何性質把動線段的長度轉化為到準線或焦點的距離來求解.10、C【解析】
直接求交集得到答案.【詳解】集合,則.故選:.【點睛】本題考查了交集運算,屬于簡單題.11、B【解析】
根據函數奇偶性,可排除D;求得及,由導函數符號可判斷在上單調遞增,即可排除AC選項.【詳解】函數易知為奇函數,故排除D.又,易知當時,;又當時,,故在上單調遞增,所以,綜上,時,,即單調遞增.又為奇函數,所以在上單調遞增,故排除A,C.故選:B【點睛】本題考查了根據函數解析式判斷函數圖象,導函數性質與函數圖象關系,屬于中檔題.12、B【解析】
以為圓心,以為半徑的圓的方程為,聯立,可求出點,則,整理計算可得離心率.【詳解】解:以為圓心,以為半徑的圓的方程為,聯立,取第一象限的解得,即,則,整理得,則(舍去),,.故選:B.【點睛】本題考查雙曲線離心率的求解,考查學生的計算能力,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、①②③④【解析】
取中點,中點,中點,先利用中位線的性質判斷點的運動軌跡為線段,平面即為平面,畫出圖形,再依次判斷:①利用等腰三角形的性質即可判斷;②直線與直線所成角即為直線與直線所成角,設正方體的棱長為2,進而求解;③由,取為中點,則,則即為與平面所成的銳二面角,進而求解;④由平行的性質及圖形判斷即可.【詳解】取中點,連接,則,所以,所以平面即為平面,取中點,中點,連接,則易證得,所以平面平面,所以點的運動軌跡為線段,平面即為平面.①取為中點,因為是等腰三角形,所以,又因為,所以,故①正確;②直線與直線所成角即為直線與直線所成角,設正方體的棱長為2,當點為中點時,直線與直線所成角最小,此時,;當點與點或點重合時,直線與直線所成角最大,此時,所以直線與直線所成角的正切值的取值范圍是,②正確;③與平面的交線為,且,取為中點,則即為與平面所成的銳二面角,,所以③正確;④正方體的各個側面中,平面,平面,平面,平面與平面所成的角相等,所以④正確.故答案為:①②③④【點睛】本題考查直線與平面的空間位置關系,考查異面直線成角,二面角,考查空間想象能力與轉化思想.14、【解析】
利用待定系數法求出冪函數的解析式,再求出的單調遞減區間.【詳解】解:冪函數的圖象經過點,則,解得;所以,其中;所以的單調遞減區間為.故答案為:.【點睛】本題考查了冪函數的圖象與性質的應用問題,屬于基礎題.15、【解析】
由題意可設,,,由向量的坐標運算,以及恒成立思想可設,的最小值即為點,到直線的距離,求得,可得不大于.【詳解】解:,且,可設,,,,可得,可得的終點均在直線上,由于為任意實數,可得時,的最小值即為點到直線的距離,可得,對于任意的實數,不等式,可得,故答案為:.【點睛】本題主要考查向量的模的求法,以及兩點的距離的運用,考查直線方程的運用,以及點到直線的距離,考查運算能力,屬于中檔題.16、【解析】試題分析:從編號分別為1,1,3,4,5的5個紅球和5個黑球,從中隨機取出4個,有種不同的結果,由于是隨機取出的,所以每個結果出現的可能性是相等的;設事件為“取出球的編號互不相同”,則事件包含了個基本事件,所以.考點:1.計數原理;1.古典概型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(1)見證明【解析】
(1)求出函數的導數,解關于導函數的不等式,求出函數的單調區間,從而求出函數的極值即可;(1)問題轉化為證ex﹣x1﹣xlnx﹣1>0,根據xlnx≤x(x﹣1),問題轉化為只需證明當x>0時,ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),根據函數的單調性證明即可.【詳解】(1),,當,,當,,在上遞增,在上遞減,在取得極大值,極大值為,無極大值.(1)要證f(x)+1<ex﹣x1.即證ex﹣x1﹣xlnx﹣1>0,先證明lnx≤x﹣1,取h(x)=lnx﹣x+1,則h′(x)=,易知h(x)在(0,1)遞增,在(1,+∞)遞減,故h(x)≤h(1)=0,即lnx≤x﹣1,當且僅當x=1時取“=”,故xlnx≤x(x﹣1),ex﹣x1﹣xlnx≥ex﹣1x1+x﹣1,故只需證明當x>0時,ex﹣1x1+x﹣1>0恒成立,令k(x)=ex﹣1x1+x﹣1,(x≥0),則k′(x)=ex﹣4x+1,令F(x)=k′(x),則F′(x)=ex﹣4,令F′(x)=0,解得:x=1ln1,∵F′(x)遞增,故x∈(0,1ln1]時,F′(x)≤0,F(x)遞減,即k′(x)遞減,x∈(1ln1,+∞)時,F′(x)>0,F(x)遞增,即k′(x)遞增,且k′(1ln1)=5﹣8ln1<0,k′(0)=1>0,k′(1)=e1﹣8+1>0,由零點存在定理,可知?x1∈(0,1ln1),?x1∈(1ln1,1),使得k′(x1)=k′(x1)=0,故0<x<x1或x>x1時,k′(x)>0,k(x)遞增,當x1<x<x1時,k′(x)<0,k(x)遞減,故k(x)的最小值是k(0)=0或k(x1),由k′(x1)=0,得=4x1﹣1,k(x1)=﹣1+x1﹣1=﹣(x1﹣1)(1x1﹣1),∵x1∈(1ln1,1),∴k(x1)>0,故x>0時,k(x)>0,原不等式成立.【點睛】本題考查了函數的單調性,極值問題,考查導數的應用以及不等式的證明,考查轉化思想,屬于中檔題.18、(1)見解析,12.5(2)①②20【解析】
(1)運用分層抽樣,結合總場次為100,可求得的值,再運用古典概型的概率計算公式可求解果;(2)①由公式可計算的值,進而可求與的回歸直線方程;②求出,再對函數求導,結合單調性,可估計這四個籃球館月惠值最大時的值.【詳解】解:(1)抽樣比為,所以分別是,6,7,8,5所以兩數之和所有可能取值是:10,12,13,15,,,所以分布列為期望為(2)因為所以,,;②,設,所以當遞增,當遞減所以約惠值最大值時的值為20【點睛】本題考查直方圖的實際應用,涉及求概率,平均數、擬合直線和導數等問題,關鍵是要讀懂題意,屬于中檔題.19、(1)不同的樣本的個數為.(2)①分布列見解析,.②線性回歸方程為.可預測該同學的物理成績為96分.【解析】
(1)按比例抽取即可,再用乘法原理計算不同的樣本數.(2)名學生中物理和數學都優秀的有3名學生,任取3名學生,都優秀的學生人數服從超幾何分布,故可得其概率分布列及其數學期望.而線性回歸方程的計算可用給出的公式計算,并利用得到的回歸方程預測該同學的物理成績.【詳解】(1)依據分層抽樣的方法,24名女同學中應抽取的人數為名,18名男同學中應抽取的人數為名,故不同的樣本的個數為.(2)①∵7名同學中數學和物理成績均為優秀的人數為3名,∴的取值為0,1,2,3.∴,,,.∴的分布列為0123∴.②∵,.∴線性回歸方程為.當時,.可預測該同學的物理成績為96分.【點睛】在計算離散型隨機變量的概率時,注意利用常見的概率分布列來簡化計算(如二項分布、超幾何分布等).20、(1).(2)【解析】
(1)利用正弦定理的邊角互化可得,再根據,利用兩角和的正弦公式即可求解.(2)已知,由知,在中,解出即可.【詳解】(1)由正弦定理知由己知,而∴,(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖南省郴州市2024-2025學年八年級下學期5月期中英語試題(含筆試答案無聽力答案、原文及音頻)
- 建筑施工特種作業-建筑起重機械安裝拆卸工(施工升降機)真題庫-3
- 日食月食地理題目及答案
- 國家標準關于《機械制圖》的基本規定(二)
- 2023-2024學年山東省濱州市高二下學期7月期末數學試題(解析版)
- 2023-2024學年湖南省株洲市炎陵縣高二下學期6月期末考試數學試題(解析版)
- 2023-2024學年河南省安陽市林州市高二下學期期末考試數學試卷(解析版)
- 2025屆河南省新鄉市高三二模語文試題(解析版)
- 2024-2025學年浙江省杭州市聯誼學校高二3月月考語文試題(解析版)
- 江蘇阿爾法生物制藥有限公司新建制劑、生物發酵及機械加工建設項目環評資料環境影響
- 基建項目建設綜合管理信息系統建設方案
- 汽車吊塔吊防碰撞安全技術交底
- 一年級下冊音樂教案 (簡譜) (演唱)同坐小竹排(7) 湘藝版
- 砂石料加工廠勞務外包服務采購項目
- 列車網絡控制技術-復習打印版
- 福建高考名著《紅樓夢》填空題+答案
- 商標法期末復習
- 材料力學計算試題(庫)完整
- 投資控股集團有限公司安全生產責任制暫行辦法
- NGW型行星齒輪傳動系統的優化設計
- 三年級上冊數學教案-第七單元 分數的初步認識 蘇教版
評論
0/150
提交評論