




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省宜春市上高縣上2025屆高考數學三模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的圖象如圖所示,,若將的圖象向左平移個單位長度后所得圖象與的圖象重合,則可取的值的是()A. B. C. D.2.為了貫徹落實黨中央精準扶貧決策,某市將其低收入家庭的基本情況經過統計繪制如圖,其中各項統計不重復.若該市老年低收入家庭共有900戶,則下列說法錯誤的是()A.該市總有15000戶低收入家庭B.在該市從業人員中,低收入家庭共有1800戶C.在該市無業人員中,低收入家庭有4350戶D.在該市大于18歲在讀學生中,低收入家庭有800戶3.已知函數的圖象如圖所示,則下列說法錯誤的是()A.函數在上單調遞減B.函數在上單調遞增C.函數的對稱中心是D.函數的對稱軸是4.將函數的圖像向左平移個單位長度后,得到的圖像關于坐標原點對稱,則的最小值為()A. B. C. D.5.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?6.若,則下列關系式正確的個數是()①②③④A.1 B.2 C.3 D.47.正方形的邊長為,是正方形內部(不包括正方形的邊)一點,且,則的最小值為()A. B. C. D.8.已知函數的定義域為,且,當時,.若,則函數在上的最大值為()A.4 B.6 C.3 D.89.已知函數則函數的圖象的對稱軸方程為()A. B.C. D.10.函數的圖象可能是()A. B. C. D.11.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長度的集合,則().A.,且 B.,且C.,且 D.,且12.已知向量,,設函數,則下列關于函數的性質的描述正確的是A.關于直線對稱 B.關于點對稱C.周期為 D.在上是增函數二、填空題:本題共4小題,每小題5分,共20分。13.春天即將來臨,某學校開展以“擁抱春天,播種綠色”為主題的植物種植實踐體驗活動.已知某種盆栽植物每株成活的概率為,各株是否成活相互獨立.該學校的某班隨機領養了此種盆栽植物10株,設為其中成活的株數,若的方差,,則________.14.若復數(是虛數單位),則________15.已知全集,集合則_____.16.《九章算術》中,將四個面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑中,平面,,且,過點分別作于點,于點,連接,則三棱錐的體積的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中.若問題中的正整數存在,求的值;若不存在,說明理由.設正數等比數列的前項和為,是等差數列,__________,,,,是否存在正整數,使得成立?18.(12分)在中,角的對邊分別為,且.(1)求角的大小;(2)若函數圖象的一條對稱軸方程為且,求的值.19.(12分)2019年是中華人民共和國成立70周年.為了讓人民了解建國70周年的風雨歷程,某地的民調機構隨機選取了該地的100名市民進行調查,將他們的年齡分成6段:,,…,,并繪制了如圖所示的頻率分布直方圖.(1)現從年齡在,,內的人員中按分層抽樣的方法抽取8人,再從這8人中隨機選取3人進行座談,用表示年齡在)內的人數,求的分布列和數學期望;(2)若用樣本的頻率代替概率,用隨機抽樣的方法從該地抽取20名市民進行調查,其中有名市民的年齡在的概率為.當最大時,求的值.20.(12分)如圖所示,直角梯形中,,,,四邊形為矩形,.(1)求證:平面平面;(2)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長,若不存在,請說明理由.21.(12分)已知,其中.(1)當時,設函數,求函數的極值.(2)若函數在區間上遞增,求的取值范圍;(3)證明:.22.(10分)手工藝是一種生活態度和對傳統的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質量關,合作社對村民制作的每件手工藝品都請3位行家進行質量把關,質量把關程序如下:(i)若一件手工藝品3位行家都認為質量過關,則該手工藝品質量為A級;(ii)若僅有1位行家認為質量不過關,再由另外2位行家進行第二次質量把關,若第二次質量把關這2位行家都認為質量過關,則該手工藝品質量為B級,若第二次質量把關這2位行家中有1位或2位認為質量不過關,則該手工藝品質量為C級;(iii)若有2位或3位行家認為質量不過關,則該手工藝品質量為D級.已知每一次質量把關中一件手工藝品被1位行家認為質量不過關的概率為,且各手工藝品質量是否過關相互獨立.(1)求一件手工藝品質量為B級的概率;(2)若一件手工藝品質量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據圖象求得函數的解析式,即可得出函數的解析式,然后求出變換后的函數解析式,結合題意可得出關于的等式,即可得出結果.【詳解】由圖象可得,函數的最小正周期為,,,則,,取,,則,,,可得,當時,.故選:B.【點睛】本題考查利用圖象求函數解析式,同時也考查了利用函數圖象變換求參數,考查計算能力,屬于中等題.2、D【解析】
根據給出的統計圖表,對選項進行逐一判斷,即可得到正確答案.【詳解】解:由題意知,該市老年低收入家庭共有900戶,所占比例為6%,則該市總有低收入家庭900÷6%=15000(戶),A正確,該市從業人員中,低收入家庭共有15000×12%=1800(戶),B正確,該市無業人員中,低收入家庭有15000×29%%=4350(戶),C正確,該市大于18歲在讀學生中,低收入家庭有15000×4%=600(戶),D錯誤.故選:D.【點睛】本題主要考查對統計圖表的認識和分析,這類題要認真分析圖表的內容,讀懂圖表反映出的信息是解題的關鍵,屬于基礎題.3、B【解析】
根據圖象求得函數的解析式,結合余弦函數的單調性與對稱性逐項判斷即可.【詳解】由圖象可得,函數的周期,所以.將點代入中,得,解得,由,可得,所以.令,得,故函數在上單調遞減,當時,函數在上單調遞減,故A正確;令,得,故函數在上單調遞增.當時,函數在上單調遞增,故B錯誤;令,得,故函數的對稱中心是,故C正確;令,得,故函數的對稱軸是,故D正確.故選:B.【點睛】本題考查由圖象求余弦型函數的解析式,同時也考查了余弦型函數的單調性與對稱性的判斷,考查推理能力與計算能力,屬于中等題.4、B【解析】
由余弦的二倍角公式化簡函數為,要想在括號內構造變為正弦函數,至少需要向左平移個單位長度,即為答案.【詳解】由題可知,對其向左平移個單位長度后,,其圖像關于坐標原點對稱故的最小值為故選:B【點睛】本題考查三角函數圖象性質與平移變換,還考查了余弦的二倍角公式逆運用,屬于簡單題.5、B【解析】試題分析:由集合A中的函數y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數考點:交集及其運算.6、D【解析】
a,b可看成是與和交點的橫坐標,畫出圖象,數形結合處理.【詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.【點睛】本題考查利用函數圖象比較大小,考查學生數形結合的思想,是一道中檔題.7、C【解析】
分別以直線為軸,直線為軸建立平面直角坐標系,設,根據,可求,而,化簡求解.【詳解】解:建立以為原點,以直線為軸,直線為軸的平面直角坐標系.設,,,則,,由,即,得.所以=,所以當時,的最小值為.故選:C.【點睛】本題考查向量的數量積的坐標表示,屬于基礎題.8、A【解析】
根據所給函數解析式滿足的等量關系及指數冪運算,可得;利用定義可證明函數的單調性,由賦值法即可求得函數在上的最大值.【詳解】函數的定義域為,且,則;任取,且,則,故,令,,則,即,故函數在上單調遞增,故,令,,故,故函數在上的最大值為4.故選:A.【點睛】本題考查了指數冪的運算及化簡,利用定義證明抽象函數的單調性,賦值法在抽象函數求值中的應用,屬于中檔題.9、C【解析】
,將看成一個整體,結合的對稱性即可得到答案.【詳解】由已知,,令,得.故選:C.【點睛】本題考查余弦型函數的對稱性的問題,在處理余弦型函數的性質時,一般采用整體法,結合三角函數的性質,是一道容易題.10、A【解析】
先判斷函數的奇偶性,以及該函數在區間上的函數值符號,結合排除法可得出正確選項.【詳解】函數的定義域為,,該函數為偶函數,排除B、D選項;當時,,排除C選項.故選:A.【點睛】本題考查根據函數的解析式辨別函數的圖象,一般分析函數的定義域、奇偶性、單調性、零點以及函數值符號,結合排除法得出結果,考查分析問題和解決問題的能力,屬于中等題.11、D【解析】
首先把三視圖轉換為幾何體,根據三視圖的長度,進一步求出個各棱長.【詳解】根據幾何體的三視圖轉換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點睛】本題考查三視圖和幾何體之間的轉換,主要考查運算能力和轉換能力及思維能力,屬于基礎題.12、D【解析】
當時,,∴f(x)不關于直線對稱;當時,,∴f(x)關于點對稱;f(x)得周期,當時,,∴f(x)在上是增函數.本題選擇D選項.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意可知:,且,從而可得值.【詳解】由題意可知:∴,即,∴故答案為:【點睛】本題考查二項分布的實際應用,考查分析問題解決問題的能力,考查計算能力,屬于中檔題.14、【解析】
直接根據復數的代數形式四則運算法則計算即可.【詳解】,.【點睛】本題主要考查復數的代數形式四則運算法則的應用.15、【解析】
根據補集的定義求解即可.【詳解】解:.故答案為.【點睛】本題主要考查了補集的運算,屬于基礎題.16、【解析】
由已知可得△AEF、△PEF均為直角三角形,且AF=2,由基本不等式可得當AE=EF=2時,△AEF的面積最大,然后由棱錐體積公式可求得體積最大值.【詳解】由PA⊥平面ABC,得PA⊥BC,又AB⊥BC,且PA∩AB=A,∴BC⊥平面PAB,則BC⊥AE,又PB⊥AE,則AE⊥平面PBC,于是AE⊥EF,且AE⊥PC,結合條件AF⊥PC,得PC⊥平面AEF,∴△AEF、△PEF均為直角三角形,由已知得AF=2,而S△AEF=(AE2+EF2)=AF2=2,當且僅當AE=EF=2時,取“=”,此時△AEF的面積最大,三棱錐P﹣AEF的體積的最大值為:VP﹣AEF===.故答案為【點睛】本題主要考查直線與平面垂直的判定,基本不等式的應用,同時考查了空間想象能力、計算能力和邏輯推理能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、見解析【解析】
根據等差數列性質及、,可求得等差數列的通項公式,由即可求得的值;根據等式,變形可得,分別討論取①②③中的一個,結合等比數列通項公式代入化簡,檢驗是否存在正整數的值即可.【詳解】∵在等差數列中,,∴,∴公差,∴,∴,若存在正整數,使得成立,即成立,設正數等比數列的公比為的公比為,若選①,∵,∴,∴,∴,∴當時,滿足成立.若選②,∵,∴,∴,∴,∴方程無正整數解,∴不存在正整數使得成立.若選③,∵,∴,∴,∴,∴解得或(舍去),∴,∴當時,滿足成立.【點睛】本題考查了等差數列通項公式的求法,等比數列通項公式及前n項和公式的應用,遞推公式的簡單應用,補充條件后求參數的值,屬于中檔題.18、(1)(2)【解析】
(1)由已知利用三角函數恒等變換的應用,正弦定理可求,即可求的值.(2)利用三角函數恒等變換的應用,可得,根據題意,得到,解得,得到函數的解析式,進而求得的值,利用三角函數恒等變換的應用可求的值.【詳解】(1)由題意,根據正弦定理,可得,又由,所以,可得,即,又因為,則,可得,∵,∴.(2)由(1)可得,所以函數的圖象的一條對稱軸方程為,∴,得,即,∴,又,∴,∴.【點睛】本題主要考查了三角函數恒等變換的應用,正弦定理在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于中檔題.19、(1)分布列見解析,(1)【解析】
(1)根據頻率分布直方圖及抽取總人數,結合各組頻率值即可求得各組抽取的人數;的可能取值為0,1,1,由離散型隨機變量概率求法即可求得各概率值,即可得分布列;由數學期望公式即可求得其數學期望.(1)先求得年齡在內的頻率,視為概率.結合二項分布的性質,表示出,令,化簡后可證明其單調性及取得最大值時的值.【詳解】(1)按分層抽樣的方法拉取的8人中,年齡在的人數為人,年齡在內的人數為人.年齡在內的人數為人.所以的可能取值為0,1,1.所以,,,所以的分市列為011.(1)設在抽取的10名市民中,年齡在內的人數為,服從二項分布.由頻率分布直方圖可知,年齡在內的頻率為,所以,所以.設,若,則,;若,則,.所以當時,最大,即當最大時,.【點睛】本題考差了離散型隨機變量分布列及數學期望的求法,二項分布的綜合應用,屬于中檔題.20、(1)見解析;(2)存在,長【解析】
(1)先證面,又因為面,所以平面平面.(2)根據題意建立空間直角坐標系.列出各點的坐標表示,設,則可得出向量,求出平面的法向量為,利用直線與平面所成角的正弦公式列方程求出或,從而求出線段的長.【詳解】解:(1)證明:因為四邊形為矩形,∴.∵∴∴∴面∴面又∵面∴平面平面(2)取為原點,所在直線為軸,所在直線為軸建立空間直角坐標系.如圖所示:則,,,,,設,;∴,,設平面的法向量為,∴,不防設.∴,化簡得,解得或;當時,,∴;當時,,∴;綜上存在這樣的點,線段的長.【點睛】本題考查平面與平面垂直的判定定理的應用,考查利用線面所成角求參數問題,是幾何綜合題,考查空間想象力以及計算能力.21、(1)極大值,無極小值;(2).(3)見解析【解析】
(1)先求導,根據導數和函數極值的關系即可求出;(2)先求導,再函數在區間上遞增,分離參數,構造函數,求出函數的最值,問題得以解決;(3)取得到,取,可得,累加和根據對數的運算性和放縮法即可證明.【詳解】解:(1)當時,設函數,則令,解得當時,,當時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設備聯鎖安全管理制度
- 設計主管績效管理制度
- 設計公司裝修管理制度
- 評估人員崗位管理制度
- 診所打針日常管理制度
- 診所藥品追溯管理制度
- 試述護理文件管理制度
- 財政公司宿舍管理制度
- 貨物公司安全管理制度
- 貨運現場安全管理制度
- 2025益陽事業單位筆試真題
- 委托加工稻米協議書
- 國際壓力性損傷潰瘍預防和治療臨床指南(2025年版)解讀
- (高清版)DG∕TJ 08-67-2015 園林綠化草坪建植和養護技術規程
- 2025年初中地理學業水平考試(八年級)模擬卷【內蒙古專用】(含解析)
- 《足外傷的護理》課件
- 動物學海濱實習知到智慧樹期末考試答案題庫2025年魯東大學
- 泵站沉井施工方案
- 職業技術學院2024級藥膳與食療專業人才培養方案
- 2025-2030中國微球行業市場現狀供需分析及投資評估規劃分析研究報告
- 2025至2030年中國礦山設備配件行業發展研究報告
評論
0/150
提交評論