平煤高級中學2025屆高三(最后沖刺)數學試卷含解析_第1頁
平煤高級中學2025屆高三(最后沖刺)數學試卷含解析_第2頁
平煤高級中學2025屆高三(最后沖刺)數學試卷含解析_第3頁
平煤高級中學2025屆高三(最后沖刺)數學試卷含解析_第4頁
平煤高級中學2025屆高三(最后沖刺)數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

平煤高級中學2025屆高三(最后沖刺)數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在三棱錐中,,,則三棱錐外接球的表面積是()A. B. C. D.2.如圖,圓錐底面半徑為,體積為,、是底面圓的兩條互相垂直的直徑,是母線的中點,已知過與的平面與圓錐側面的交線是以為頂點的拋物線的一部分,則該拋物線的焦點到圓錐頂點的距離等于()A. B.1 C. D.3.在正項等比數列{an}中,a5-a1=15,a4-a2=6,則a3=()A.2 B.4 C. D.84.若為虛數單位,則復數的共軛復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.設函數的導函數,且滿足,若在中,,則()A. B. C. D.6.甲、乙兩名學生的六次數學測驗成績(百分制)的莖葉圖如圖所示.①甲同學成績的中位數大于乙同學成績的中位數;②甲同學的平均分比乙同學的平均分高;③甲同學的平均分比乙同學的平均分低;④甲同學成績的方差小于乙同學成績的方差.以上說法正確的是()A.③④ B.①② C.②④ D.①③④7.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.8.定義在R上的函數y=fx滿足fx≤2x-1A. B. C. D.9.設,且,則()A. B. C. D.10.已知為定義在上的奇函數,若當時,(為實數),則關于的不等式的解集是()A. B. C. D.11.若直線經過拋物線的焦點,則()A. B. C.2 D.12.設函數,則使得成立的的取值范圍是().A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.己知函數,若關于的不等式對任意的恒成立,則實數的取值范圍是______.14.的展開式中,的系數是______.15.在中,已知,則的最小值是________.16.甲、乙、丙、丁四名同學報名參加淮南文明城市創建志愿服務活動,服務活動共有“走進社區”、“環境監測”、“愛心義演”、“交通宣傳”等四個項目,每人限報其中一項,記事件為“4名同學所報項目各不相同”,事件為“只有甲同學一人報走進社區項目”,則的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知是遞增的等差數列,,是方程的根.(1)求的通項公式;(2)求數列的前項和.18.(12分)若養殖場每個月生豬的死亡率不超過,則該養殖場考核為合格,該養殖場在2019年1月到8月養殖生豬的相關數據如下表所示:月份1月2月3月4月5月6月7月8月月養殖量/千只33456791012月利潤/十萬元3.64.14.45.26.27.57.99.1生豬死亡數/只293749537798126145(1)從該養殖場2019年2月到6月這5個月中任意選取3個月,求恰好有2個月考核獲得合格的概率;(2)根據1月到8月的數據,求出月利潤y(十萬元)關于月養殖量x(千只)的線性回歸方程(精確到0.001).(3)預計在今后的養殖中,月利潤與月養殖量仍然服從(2)中的關系,若9月份的養殖量為1.5萬只,試估計:該月利潤約為多少萬元?附:線性回歸方程中斜率和截距用最小二乘法估計計算公式如下:,參考數據:.19.(12分)如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=60°.(1)求BC的長度;(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的視角分別為∠APB=α,∠DPC=β,問點P在何處時,α+β最?。?0.(12分)已知數列的前項和為,且滿足().(1)求數列的通項公式;(2)設(),數列的前項和.若對恒成立,求實數,的值.21.(12分)隨著現代社會的發展,我國對于環境保護越來越重視,企業的環保意識也越來越強.現某大型企業為此建立了5套環境監測系統,并制定如下方案:每年企業的環境監測費用預算定為1200萬元,日常全天候開啟3套環境監測系統,若至少有2套系統監測出排放超標,則立即檢查污染源處理系統;若有且只有1套系統監測出排放超標,則立即同時啟動另外2套系統進行1小時的監測,且后啟動的這2套監測系統中只要有1套系統監測出排放超標,也立即檢查污染源處理系統.設每個時間段(以1小時為計量單位)被每套系統監測出排放超標的概率均為,且各個時間段每套系統監測出排放超標情況相互獨立.(1)當時,求某個時間段需要檢查污染源處理系統的概率;(2)若每套環境監測系統運行成本為300元/小時(不啟動則不產生運行費用),除運行費用外,所有的環境監測系統每年的維修和保養費用需要100萬元.現以此方案實施,問該企業的環境監測費用是否會超過預算(全年按9000小時計算)?并說明理由.22.(10分)已知橢圓:,不與坐標軸垂直的直線與橢圓交于,兩點.(Ⅰ)若線段的中點坐標為,求直線的方程;(Ⅱ)若直線過點,點滿足(,分別為直線,的斜率),求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

取的中點,連接、,推導出,設設球心為,和的中心分別為、,可得出平面,平面,利用勾股定理計算出球的半徑,再利用球體的表面積公式可得出結果.【詳解】取的中點,連接、,由和都是正三角形,得,,則,則,由勾股定理的逆定理,得.設球心為,和的中心分別為、.由球的性質可知:平面,平面,又,由勾股定理得.所以外接球半徑為.所以外接球的表面積為.故選:B.【點睛】本題考查三棱錐外接球表面積的計算,解題時要分析幾何體的結構,找出球心的位置,并以此計算出球的半徑長,考查推理能力與計算能力,屬于中等題.2、D【解析】

建立平面直角坐標系,求得拋物線的軌跡方程,解直角三角形求得拋物線的焦點到圓錐頂點的距離.【詳解】將拋物線放入坐標系,如圖所示,∵,,,∴,設拋物線,代入點,可得∴焦點為,即焦點為中點,設焦點為,,,∴.故選:D【點睛】本小題考查圓錐曲線的概念,拋物線的性質,兩點間的距離等基礎知識;考查運算求解能力,空間想象能力,推理論證能力,應用意識.3、B【解析】

根據題意得到,,解得答案.【詳解】,,解得或(舍去).故.故選:.【點睛】本題考查了等比數列的計算,意在考查學生的計算能力.4、B【解析】

由共軛復數的定義得到,通過三角函數值的正負,以及復數的幾何意義即得解【詳解】由題意得,因為,,所以在復平面內對應的點位于第二象限.故選:B【點睛】本題考查了共軛復數的概念及復數的幾何意義,考查了學生概念理解,數形結合,數學運算的能力,屬于基礎題.5、D【解析】

根據的結構形式,設,求導,則,在上是增函數,再根據在中,,得到,,利用余弦函數的單調性,得到,再利用的單調性求解.【詳解】設,所以,因為當時,,即,所以,在上是增函數,在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導數與函數的單調性,還考查了運算求解的能力,屬于中檔題.6、A【解析】

由莖葉圖中數據可求得中位數和平均數,即可判斷①②③,再根據數據集中程度判斷④.【詳解】由莖葉圖可得甲同學成績的中位數為,乙同學成績的中位數為,故①錯誤;,,則,故②錯誤,③正確;顯然甲同學的成績更集中,即波動性更小,所以方差更小,故④正確,故選:A【點睛】本題考查由莖葉圖分析數據特征,考查由莖葉圖求中位數、平均數.7、A【解析】

由余弦定理求出角,再由三角形面積公式計算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點睛】本題主要考查了余弦定理的應用,三角形的面積公式,考查了學生的運算求解能力.8、D【解析】

根據y=fx+1為奇函數,得到函數關于1,0中心對稱,排除AB,計算f1.5≤【詳解】y=fx+1為奇函數,即fx+1=-f-x+1,函數關于f1.5≤2故選:D.【點睛】本題考查了函數圖像的識別,確定函數關于1,0中心對稱是解題的關鍵.9、C【解析】

將等式變形后,利用二次根式的性質判斷出,即可求出的范圍.【詳解】即故選:C【點睛】此題考查解三角函數方程,恒等變化后根據的關系即可求解,屬于簡單題目.10、A【解析】

先根據奇函數求出m的值,然后結合單調性求解不等式.【詳解】據題意,得,得,所以當時,.分析知,函數在上為增函數.又,所以.又,所以,所以,故選A.【點睛】本題主要考查函數的性質應用,側重考查數學抽象和數學運算的核心素養.11、B【解析】

計算拋物線的交點為,代入計算得到答案.【詳解】可化為,焦點坐標為,故.故選:.【點睛】本題考查了拋物線的焦點,屬于簡單題.12、B【解析】

由奇偶性定義可判斷出為偶函數,由單調性的性質可知在上單調遞增,由此知在上單調遞減,從而將所求不等式化為,解絕對值不等式求得結果.【詳解】由題意知:定義域為,,為偶函數,當時,,在上單調遞增,在上單調遞減,在上單調遞增,則在上單調遞減,由得:,解得:或,的取值范圍為.故選:.【點睛】本題考查利用函數的單調性和奇偶性求解函數不等式的問題;奇偶性的作用是能夠確定對稱區間的單調性,單調性的作用是能夠將函數值的大小關系轉化為自變量的大小關系,進而化簡不等式.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

首先判斷出函數為定義在上的奇函數,且在定義域上單調遞增,由此不等式對任意的恒成立,可轉化為在上恒成立,進而建立不等式組,解出即可得到答案.【詳解】解:函數的定義域為,且,函數為奇函數,當時,函數,顯然此時函數為增函數,函數為定義在上的增函數,不等式即為,在上恒成立,,解得.故答案為.【點睛】本題考查函數單調性及奇偶性的綜合運用,考查不等式的恒成立問題,屬于常規題目.14、【解析】

先將原式展開成,發現中不含,故只研究后面一項即可得解.【詳解】,依題意,只需求中的系數,是.故答案為:-40【點睛】本題考查二項式定理性質,關鍵是先展開再利用排列組合思想解決,屬于基礎題.15、【解析】分析:可先用向量的數量積公式將原式變形為:,然后再結合余弦定理整理為,再由cosC的余弦定理得到a,b的關系式,最后利用基本不等式求解即可.詳解:已知,可得,將角A,B,C的余弦定理代入得,由,當a=b時取到等號,故cosC的最小值為.點睛:考查向量的數量積、余弦定理、基本不等式的綜合運用,能正確轉化是解題關鍵.屬于中檔題.16、【解析】

根據條件概率的求法,分別求得,再代入條件概率公式求解.【詳解】根據題意得所以故答案為:【點睛】本題主要考查條件概率的求法,還考查了理解辨析的能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)方程的兩根為,由題意得,在利用等差數列的通項公式即可得出;(2)利用“錯位相減法”、等比數列的前項和公式即可求出.【詳解】方程x2-5x+6=0的兩根為2,3.由題意得a2=2,a4=3.設數列{an}的公差為d,則a4-a2=2d,故d=,從而得a1=.所以{an}的通項公式為an=n+1.(2)設的前n項和為Sn,由(1)知=,則Sn=++…++,Sn=++…++,兩式相減得Sn=+-=+-,所以Sn=2-.考點:等差數列的性質;數列的求和.【方法點晴】本題主要考查了等差數列的通項公式、“錯位相減法”、等比數列的前項和公式、一元二次方程的解法等知識點的綜合應用,解答中方程的兩根為,由題意得,即可求解數列的通項公式,進而利用錯位相減法求和是解答的關鍵,著重考查了學生的推理能力與運算能力,屬于中檔試題.18、(1);(2);(3)利潤約為111.2萬元.【解析】

(1)首先列出基本事件,然后根據古典概型求出恰好兩個月合格的概率;(2)首先求出利潤y和養殖量x的平均值,然后根據公式求出線性回歸方程中的斜率和截距即可求出線性回歸方程;(3)根據線性回歸方程代入9月份的數據即可求出9月利潤.【詳解】(1)2月到6月中,合格的月份為2,3,4月份,則5個月份任意選取3個月份的基本事件有,,,,,,,,,,共計10個,故恰好有兩個月考核合格的概率為;(2),,,,故;(3)當千只,(十萬元)(萬元),故9月份的利潤約為111.2萬元.【點睛】本題主要考查了古典概型,線性回歸方程的求解和使用,屬于基礎題.19、(1);(2)當BP為cm時,α+β取得最小值.【解析】

(1)作AE⊥CD,垂足為E,則CE=10,DE=10,設BC=x,根據得到,解得答案.(2)設BP=t,則,故,設,求導得到函數單調性,得到最值.【詳解】(1)作AE⊥CD,垂足為E,則CE=10,DE=10,設BC=x,則,化簡得,解之得,或(舍),(2)設BP=t,則,,設,,令f'(t)=0,因為,得,當時,f'(t)<0,f(t)是減函數;當時,f'(t)>0,f(t)是增函數,所以,當時,f(t)取得最小值,即tan(α+β)取得最小值,因為恒成立,所以f(t)<0,所以tan(α+β)<0,,因為y=tanx在上是增函數,所以當時,α+β取得最小值.【點睛】本題考查了三角恒等變換,利用導數求最值,意在考查學生的計算能力和應用能力.20、(1)(2),.【解析】

(1)根據數列的通項與前n項和的關系式,即求解數列的通項公式;(2)由(1)可得,利用等比數列的前n項和公式和裂項法,求得,結合題意,即可求解.【詳解】(1)由題意,當時,由,解得;當時,可得,即,顯然當時上式也適合,所以數列的通項公式為.(2)由(1)可得,所以.因為對恒成立,所以,.【點睛】本題主要考查了數列的通項公式的求解,等差數列的前n項和公式,以及裂項法求和的應用,其中解答中熟記等差、等比數列的通項公式和前n項和公式,以及合理利用“裂項法”求和是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.21、(1);(2)不會超過預算,理由見解析【解析】

(1)求出某個時間段在開啟3套系統就被確定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論