




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023屆江蘇省泗陽縣實驗初級中學高考模擬試卷(1)數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,是兩條不同的直線,,是兩個不同的平面,給出下列四個命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個數為()A. B. C. D.2.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β3.要得到函數的圖象,只需將函數的圖象上所有點的()A.橫坐標縮短到原來的(縱坐標不變),再向左平移個單位長度B.橫坐標縮短到原來的(縱坐標不變),再向右平移個單位長度C.橫坐標伸長到原來的2倍(縱坐標不變),再向左平移個單位長度D.橫坐標伸長到原來的2倍(縱坐標不變),再向右平移個單位長度4.若不等式對恒成立,則實數的取值范圍是()A. B. C. D.5.總體由編號為01,02,...,39,40的40個個體組成.利用下面的隨機數表選取5個個體,選取方法是從隨機數表(如表)第1行的第4列和第5列數字開始由左到右依次選取兩個數字,則選出來的第5個個體的編號為()A.23 B.21 C.35 D.326.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.7.已知函數,且關于的方程有且只有一個實數根,則實數的取值范圍().A. B. C. D.8.下列函數中,既是奇函數,又是上的單調函數的是()A. B.C. D.9.記的最大值和最小值分別為和.若平面向量、、,滿足,則()A. B.C. D.10.已知函數在上單調遞增,則的取值范圍()A. B. C. D.11.若實數、滿足,則的最小值是()A. B. C. D.12.五行學說是華夏民族創造的哲學思想,是華夏文明重要組成部分.古人認為,天下萬物皆由金、木、水、火、土五類元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關系.若從5類元素中任選2類元素,則2類元素相生的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數為上的奇函數,滿足.則不等式的解集為________.14.在直角坐標系中,已知點和點,若點在的平分線上,且,則向量的坐標為___________.15.已知向量=(1,2),=(-3,1),則=______.16.點P是△ABC所在平面內一點且在△ABC內任取一點,則此點取自△PBC內的概率是____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)2018年反映社會現實的電影《我不是藥神》引起了很大的轟動,治療特種病的創新藥研發成了當務之急.為此,某藥企加大了研發投入,市場上治療一類慢性病的特效藥品的研發費用(百萬元)和銷量(萬盒)的統計數據如下:研發費用(百萬元)2361013151821銷量(萬盒)1122.53.53.54.56(1)求與的相關系數精確到0.01,并判斷與的關系是否可用線性回歸方程模型擬合?(規定:時,可用線性回歸方程模型擬合);(2)該藥企準備生產藥品的三類不同的劑型,,,并對其進行兩次檢測,當第一次檢測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,,合格的概率分別為,,,第二次檢測時,三類劑型,,合格的概率分別為,,.兩次檢測過程相互獨立,設經過兩次檢測后,,三類劑型合格的種類數為,求的數學期望.附:(1)相關系數(2),,,.18.(12分)已知函數,,若存在實數使成立,求實數的取值范圍.19.(12分)對于非負整數集合(非空),若對任意,或者,或者,則稱為一個好集合.以下記為的元素個數.(1)給出所有的元素均小于的好集合.(給出結論即可)(2)求出所有滿足的好集合.(同時說明理由)(3)若好集合滿足,求證:中存在元素,使得中所有元素均為的整數倍.20.(12分)已知橢圓的左焦點坐標為,,分別是橢圓的左,右頂點,是橢圓上異于,的一點,且,所在直線斜率之積為.(1)求橢圓的方程;(2)過點作兩條直線,分別交橢圓于,兩點(異于點).當直線,的斜率之和為定值時,直線是否恒過定點?若是,求出定點坐標;若不是,請說明理.21.(12分)已知橢圓過點且橢圓的左、右焦點與短軸的端點構成的四邊形的面積為.(1)求橢圓C的標準方程:(2)設A是橢圓的左頂點,過右焦點F的直線,與橢圓交于P,Q,直線AP,AQ與直線交于M,N,線段MN的中點為E.①求證:;②記,,的面積分別為、、,求證:為定值.22.(10分)已知.(1)求不等式的解集;(2)記的最小值為,且正實數滿足.證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
利用線線、線面、面面相應的判定與性質來解決.【詳解】如果兩條平行線中一條垂直于這個平面,那么另一條也垂直于這個平面知①正確;當直線平行于平面與平面的交線時也有,,故②錯誤;若,則垂直平面內以及與平面平行的所有直線,故③正確;若,則存在直線且,因為,所以,從而,故④正確.故選:C.【點睛】本題考查空間中線線、線面、面面的位置關系,里面涉及到了相應的判定定理以及性質定理,是一道基礎題.2.B【解析】
根據線面平行、線面垂直和空間角的知識,判斷A選項的正確性.由線面平行有關知識判斷B選項的正確性.根據面面垂直的判定定理,判斷C選項的正確性.根據面面平行的性質判斷D選項的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點睛】本小題主要考查空間線線、線面和面面有關命題真假性的判斷,屬于基礎題.3.C【解析】
根據三角函數圖像的變換與參數之間的關系,即可容易求得.【詳解】為得到,將橫坐標伸長到原來的2倍(縱坐標不變),故可得;再將向左平移個單位長度,故可得.故選:C.【點睛】本題考查三角函數圖像的平移,涉及誘導公式的使用,屬基礎題.4.B【解析】
轉化為,構造函數,利用導數研究單調性,求函數最值,即得解.【詳解】由,可知.設,則,所以函數在上單調遞增,所以.所以.故的取值范圍是.故選:B【點睛】本題考查了導數在恒成立問題中的應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.5.B【解析】
根據隨機數表法的抽樣方法,確定選出來的第5個個體的編號.【詳解】隨機數表第1行的第4列和第5列數字為4和6,所以從這兩個數字開始,由左向右依次選取兩個數字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在編號01,02,…,39,40內的有:16,26,16,24,23,21,…依次不重復的第5個編號為21.故選:B【點睛】本小題主要考查隨機數表法進行抽樣,屬于基礎題.6.D【解析】
根據面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【詳解】對于A,當,,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當,,時,則,故不能作為的充分條件,故B錯誤;對于C,當,,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當,,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎題.7.B【解析】
根據條件可知方程有且只有一個實根等價于函數的圖象與直線只有一個交點,作出圖象,數形結合即可.【詳解】解:因為條件等價于函數的圖象與直線只有一個交點,作出圖象如圖,由圖可知,,故選:B.【點睛】本題主要考查函數圖象與方程零點之間的關系,數形結合是關鍵,屬于基礎題.8.C【解析】
對選項逐個驗證即得答案.【詳解】對于,,是偶函數,故選項錯誤;對于,,定義域為,在上不是單調函數,故選項錯誤;對于,當時,;當時,;又時,.綜上,對,都有,是奇函數.又時,是開口向上的拋物線,對稱軸,在上單調遞增,是奇函數,在上是單調遞增函數,故選項正確;對于,在上單調遞增,在上單調遞增,但,在上不是單調函數,故選項錯誤.故選:.【點睛】本題考查函數的基本性質,屬于基礎題.9.A【解析】
設為、的夾角,根據題意求得,然后建立平面直角坐標系,設,,,根據平面向量數量積的坐標運算得出點的軌跡方程,將和轉化為圓上的點到定點距離,利用數形結合思想可得出結果.【詳解】由已知可得,則,,,建立平面直角坐標系,設,,,由,可得,即,化簡得點的軌跡方程為,則,則轉化為圓上的點與點的距離,,,,轉化為圓上的點與點的距離,,.故選:A.【點睛】本題考查和向量與差向量模最值的求解,將向量坐標化,將問題轉化為圓上的點到定點距離的最值問題是解答的關鍵,考查化歸與轉化思想與數形結合思想的應用,屬于中等題.10.B【解析】
由,可得,結合在上單調遞增,易得,即可求出的范圍.【詳解】由,可得,時,,而,又在上單調遞增,且,所以,則,即,故.故選:B.【點睛】本題考查了三角函數的單調性的應用,考查了學生的邏輯推理能力,屬于基礎題.11.D【解析】
根據約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優解,求出最優解的坐標,代入目標函數得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯立,得,可得點,由得,平移直線,當該直線經過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故選:D.【點睛】本題考查簡單的線性規劃,考查數形結合的解題思想方法,是基礎題.12.A【解析】
列舉出金、木、水、火、土任取兩個的所有結果共10種,其中2類元素相生的結果有5種,再根據古典概型概率公式可得結果.【詳解】金、木、水、火、土任取兩類,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結果,其中兩類元素相生的有火木、火土、木水、水金、金土共5結果,所以2類元素相生的概率為,故選A.【點睛】本題主要考查古典概型概率公式的應用,屬于基礎題,利用古典概型概率公式求概率時,找準基本事件個數是解題的關鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數較少且易一一列舉出的;(2)樹狀圖法:適合于較為復雜的問題中的基本亊件的探求.在找基本事件個數時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現象的發生.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
構造函數,利用導數判斷出函數的單調性,再將所求不等式變形為,利用函數的單調性即可得解.【詳解】設,則,設,則.當時,,此時函數單調遞減;當時,,此時函數單調遞增.所以,函數在處取得極小值,也是最小值,即,,,,即,所以,函數在上為增函數,函數為上的奇函數,則,,則不等式等價于,又,解得.因此,不等式的解集為.故答案為:.【點睛】本題主要考查不等式的求解,構造函數,求函數的導數,利用導數和函數單調性之間的關系是解決本題的關鍵.綜合性較強.14.【解析】
點在的平分線可知與向量共線,利用線性運算求解即可.【詳解】因為點在的平線上,所以存在使,而,可解得,所以,故答案為:【點睛】本題主要考查了向量的線性運算,利用向量的坐標求向量的模,屬于中檔題.15.-6【解析】
由可求,然后根據向量數量積的坐標表示可求.【詳解】∵=(1,2),=(-3,1),∴=(-4,-1),則=1×(-4)+2×(-1)=-6故答案為-6【點睛】本題主要考查了向量數量積的坐標表示,屬于基礎試題.16.【解析】
設是中點,根據已知條件判斷出三點共線且是線段靠近的三等分點,由此求得,結合幾何概型求得點取自三角形的概率.【詳解】設是中點,因為,所以,所以三點共線且點是線段靠近的三等分點,故,所以此點取自內的概率是.故答案為:【點睛】本小題主要考查三點共線的向量表示,考查幾何概型概率計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)0.98;可用線性回歸模型擬合.(2)【解析】
(1)根據題目提供的數據求出,代入相關系數公式求出,根據的大小來確定結果;(2)求出藥品的每類劑型經過兩次檢測后合格的概率,發現它們相同,那么經過兩次檢測后,,三類劑型合格的種類數為,服從二項分布,利用二項分布的期望公式求解即可.【詳解】解:(1)由題意可知,,由公式,,∴與的關系可用線性回歸模型擬合;(2)藥品的每類劑型經過兩次檢測后合格的概率分別為,,,由題意,,.【點睛】本題考查相關系數的求解,考查二項分布的期望,是中檔題.18.【解析】試題分析:先將問題“存在實數使成立”轉化為“求函數的最大值”,再借助柯西不等式求出的最大值即可獲解.試題解析:存在實數使成立,等價于的最大值大于,因為,由柯西不等式:,所以,當且僅當時取“”,故常數的取值范圍是.考點:柯西不等式即運用和轉化與化歸的數學思想的運用.19.(1),,,.(2);證明見解析.(3)證明見解析.【解析】
(1)根據好集合的定義列舉即可得到結果;(2)設,其中,由知;由可知或,分別討論兩種情況可的結果;(3)記,則,設,由歸納推理可求得,從而得到,從而得到,可知存在元素滿足題意.【詳解】(1),,,.(2)設,其中,則由題意:,故,即,考慮,可知:,或,若,則考慮,,,則,,但此時,,不滿足題意;若,此時,滿足題意,,其中為相異正整數.(3)記,則,首先,,設,其中,分別考慮和其他任一元素,由題意可得:也在中,而,,,對于,考慮,,其和大于,故其差,特別的,,,由,且,,以此類推:,,此時,故中存在元素,使得中所有元素均為的整數倍.【點睛】本題考查集合中的新定義問題的求解,關鍵是明確已知中所給的新定義的具體要求,根據集合元素的要求進行推理說明,對于學生分析和解決問題能力、邏輯推理能力有較高的要求,屬于較難題.20.(1)(2)直線過定點【解析】
(1),再由,解方程組即可;(2)設,,由,得,由直線MN的方程與橢圓方程聯立得到根與系數的關系,代入計算即可.【詳解】(1)由題意知:,又,且解得,,∴橢圓方程為,(2)當直線的斜率存在時,設其方程為,設,,由,得.則,(*)由,得,整理可得(*)代
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年工業互聯網平臺網絡安全態勢感知技術安全防護與風險控制研究報告
- 【高中語文】第六單元綜合檢測卷+高一語文統編版必修上冊
- 2025年電商平臺大數據營銷策略與金融電商精準營銷研究報告
- 2025年教育資源整合項目風險管理與民族地區社會穩定保障研究報告
- 2025年城市供水設施建設項目社會穩定風險評估方法與實踐報告
- 2025年智能家居行業生態構建挑戰與用戶滿意度分析報告
- 單位疫情一刀切管理制度
- 服裝企業架構管理制度
- 服務企業投訴管理制度
- 施工工序策劃管理制度
- 第七屆全國急救技能大賽(醫生組)理論考試題庫大全-上部分
- 醫療器械運輸管理制度范本
- 《癌痛與癌痛治療》課件
- 經空氣傳播疾病醫院感染預防與控制規范課件
- 冠心病合并糖尿病血脂管理
- GB/T 43492-2023預制保溫球墨鑄鐵管、管件和附件
- PDCA循環在我院靜脈用藥調配中心用藥錯誤管理中的應用靜配中心質量持續改進案例
- 精神病患者攻擊行為預防
- 《議程設置理論》課件
- 二單元稅率利率復習課
- GB/Z 43281-2023即時檢驗(POCT)設備監督員和操作員指南
評論
0/150
提交評論