2025屆天津市十二區縣重點學校高三第六次模擬考試數學試卷含解析_第1頁
2025屆天津市十二區縣重點學校高三第六次模擬考試數學試卷含解析_第2頁
2025屆天津市十二區縣重點學校高三第六次模擬考試數學試卷含解析_第3頁
2025屆天津市十二區縣重點學校高三第六次模擬考試數學試卷含解析_第4頁
2025屆天津市十二區縣重點學校高三第六次模擬考試數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆天津市十二區縣重點學校高三第六次模擬考試數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列命題為真命題的個數是()(其中,為無理數)①;②;③.A.0 B.1 C.2 D.32.已知復數和復數,則為A. B. C. D.3.已知圓錐的高為3,底面半徑為,若該圓錐的頂點與底面的圓周都在同一個球面上,則這個球的體積與圓錐的體積的比值為()A. B. C. D.4.已知,且,則在方向上的投影為()A. B. C. D.5.已知水平放置的△ABC是按“斜二測畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面積是()A. B.2C. D.6.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設到直線的距離之和的最大值為,若數列的前項和恒成立,則實數的取值范圍是()A. B. C. D.7.如圖所示,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.8.已知函數(表示不超過x的最大整數),若有且僅有3個零點,則實數a的取值范圍是()A. B. C. D.9.設正項等比數列的前n項和為,若,,則公比()A. B.4 C. D.210.函數與在上最多有n個交點,交點分別為(,……,n),則()A.7 B.8 C.9 D.1011.的展開式中的系數為()A.-30 B.-40 C.40 D.5012.在等腰直角三角形中,,為的中點,將它沿翻折,使點與點間的距離為,此時四面體的外接球的表面積為().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,為雙曲線的左、右焦點,雙曲線的漸近線上存在點滿足,則的最大值為________.14.記實數中的最大數為,最小數為.已知實數且三數能構成三角形的三邊長,若,則的取值范圍是.15.已知,(,),則=_______.16.設P為有公共焦點的橢圓與雙曲線的一個交點,且,橢圓的離心率為,雙曲線的離心率為,若,則______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.(1)求橢圓的方程;(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.18.(12分)已知為坐標原點,單位圓與角終邊的交點為,過作平行于軸的直線,設與終邊所在直線的交點為,.(1)求函數的最小正周期;(2)求函數在區間上的值域.19.(12分)如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形,在上,且面.(1)求證:是的中點;(2)在上是否存在點,使二面角為直角?若存在,求出的值;若不存在,說明理由.20.(12分)已知函數.(1)若函數,試討論的單調性;(2)若,,求的取值范圍.21.(12分)已知向量,函數.(1)求函數的最小正周期及單調遞增區間;(2)在中,三內角的對邊分別為,已知函數的圖像經過點,成等差數列,且,求a的值.22.(10分)在平面直角坐標系中,曲線的參數方程為(為參數).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.(Ⅰ)求直線的直角坐標方程與曲線的普通方程;(Ⅱ)已知點設直線與曲線相交于兩點,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

對于①中,根據指數冪的運算性質和不等式的性質,可判定值正確的;對于②中,構造新函數,利用導數得到函數為單調遞增函數,進而得到,即可判定是錯誤的;對于③中,構造新函數,利用導數求得函數的最大值為,進而得到,即可判定是正確的.【詳解】由題意,對于①中,由,可得,根據不等式的性質,可得成立,所以是正確的;對于②中,設函數,則,所以函數為單調遞增函數,因為,則又由,所以,即,所以②不正確;對于③中,設函數,則,當時,,函數單調遞增,當時,,函數單調遞減,所以當時,函數取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點睛】本題主要考查了不等式的性質,以及導數在函數中的綜合應用,其中解答中根據題意,合理構造新函數,利用導數求得函數的單調性和最值是解答的關鍵,著重考查了構造思想,以及推理與運算能力,屬于中檔試題.2、C【解析】

利用復數的三角形式的乘法運算法則即可得出.【詳解】z1z2=(cos23°+isin23°)?(cos37°+isin37°)=cos60°+isin60°=.故答案為C.【點睛】熟練掌握復數的三角形式的乘法運算法則是解題的關鍵,復數問題高考必考,常見考點有:點坐標和復數的對應關系,點的象限和復數的對應關系,復數的加減乘除運算,復數的模長的計算.3、B【解析】

計算求半徑為,再計算球體積和圓錐體積,計算得到答案.【詳解】如圖所示:設球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【點睛】本題考查了圓錐,球體積,圓錐的外接球問題,意在考查學生的計算能力和空間想象能力.4、C【解析】

由向量垂直的向量表示求出,再由投影的定義計算.【詳解】由可得,因為,所以.故在方向上的投影為.故選:C.【點睛】本題考查向量的數量積與投影.掌握向量垂直與數量積的關系是解題關鍵.5、A【解析】

先根據已知求出原△ABC的高為AO=,再求原△ABC的面積.【詳解】由題圖可知原△ABC的高為AO=,∴S△ABC=×BC×OA=×2×=,故答案為A【點睛】本題主要考查斜二測畫法的定義和三角形面積的計算,意在考察學生對這些知識的掌握水平和分析推理能力.6、B【解析】

由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點睛】本題考查了向量數量積,點到直線的距離,數列求和等知識,是一道不錯的綜合題.7、C【解析】

作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運算求解能力,求解時注意球心的確定.8、A【解析】

根據[x]的定義先作出函數f(x)的圖象,利用函數與方程的關系轉化為f(x)與g(x)=ax有三個不同的交點,利用數形結合進行求解即可.【詳解】當時,,當時,,當時,,當時,,若有且僅有3個零點,則等價為有且僅有3個根,即與有三個不同的交點,作出函數和的圖象如圖,當a=1時,與有無數多個交點,當直線經過點時,即,時,與有兩個交點,當直線經過點時,即時,與有三個交點,要使與有三個不同的交點,則直線處在過和之間,即,故選:A.【點睛】利用函數零點的情況求參數值或取值范圍的方法(1)直接法:直接根據題設條件構建關于參數的不等式,再通過解不等式確定參數的范圍;(2)分離參數法:先將參數分離,轉化成求函數的值域(最值)問題加以解決;(3)數形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解.9、D【解析】

由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數列得,∴,故選:D.【點睛】本題主要考查等比數列的性質的應用,屬于基礎題.10、C【解析】

根據直線過定點,采用數形結合,可得最多交點個數,然后利用對稱性,可得結果.【詳解】由題可知:直線過定點且在是關于對稱如圖通過圖像可知:直線與最多有9個交點同時點左、右邊各四個交點關于對稱所以故選:C【點睛】本題考查函數對稱性的應用,數形結合,難點在于正確畫出圖像,同時掌握基礎函數的性質,屬難題.11、C【解析】

先寫出的通項公式,再根據的產生過程,即可求得.【詳解】對二項式,其通項公式為的展開式中的系數是展開式中的系數與的系數之和.令,可得的系數為;令,可得的系數為;故的展開式中的系數為.故選:C.【點睛】本題考查二項展開式中某一項系數的求解,關鍵是對通項公式的熟練使用,屬基礎題.12、D【解析】

如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點,這樣根據幾何關系,求外接球的半徑.【詳解】中,易知,翻折后,,,設外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點,設幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補形為正方體或長方體,比如三條側棱兩兩垂直的三棱錐,或是構造直角三角形法,確定球心的位置,構造關于外接球半徑的方程求解.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設,由可得,整理得,即點在以為圓心,為半徑的圓上.又點到雙曲線的漸近線的距離為,所以當雙曲線的漸近線與圓相切時,取得最大值,此時,解得.14、【解析】試題分析:顯然,又,①當時,,作出可行區域,因拋物線與直線及在第一象限內的交點分別是(1,1)和,從而②當時,,作出可行區域,因拋物線與直線及在第一象限內的交點分別是(1,1)和,從而綜上所述,的取值范圍是.考點:不等式、簡單線性規劃.15、【解析】

先利用倍角公式及差角公式把已知條件化簡可得,平方可得.【詳解】∵,∴,則,平方可得.故答案為:.【點睛】本題主要考查三角恒等變換,倍角公式的合理選擇是求解的關鍵,側重考查數學運算的核心素養.16、【解析】設根據橢圓的幾何性質可得,根據雙曲線的幾何性質可得,,即故答案為三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,且方程為或.【解析】

(1)依題意列出關于a,b,c的方程組,求得a,b,進而可得到橢圓方程;(2)聯立直線和橢圓得到,要使以為直徑的圓過橢圓的左頂點,則,結合韋達定理可得到參數值.【詳解】(1)直線的一般方程為.依題意,解得,故橢圓的方程式為.(2)假若存在這樣的直線,當斜率不存在時,以為直徑的圓顯然不經過橢圓的左頂點,所以可設直線的斜率為,則直線的方程為.由,得.由,得.記,的坐標分別為,,則,,而.要使以為直徑的圓過橢圓的左頂點,則,即,所以,整理解得或,所以存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點,直線的方程為或.【點睛】本題主要考查直線與圓錐曲線位置關系,所使用方法為韋達定理法:因直線的方程是一次的,圓錐曲線的方程是二次的,故直線與圓錐曲線的問題常轉化為方程組關系問題,最終轉化為一元二次方程問題,故用韋達定理及判別式是解決圓錐曲線問題的重點方法之一,尤其是弦中點問題,弦長問題,可用韋達定理直接解決,但應注意不要忽視判別式的作用.18、(1);(2).【解析】

(1)根據題意,求得,,因而得出,利用降冪公式和二倍角的正弦公式化簡函數,最后利用,求出的最小正周期;(2)由(1)得,再利用整體代入求出函數的值域.【詳解】(1)因為,,所以,,所以函數的最小正周期為.(2)因為,所以,所以,故函數在區間上的值域為.【點睛】本題考查正弦型函數的周期和值域,運用到向量的坐標運算、降冪公式和二倍角的正弦公式,考查化簡和計算能力.19、(1)見解析;(2).【解析】試題分析:(1)連交于可得是中點,再根據面可得進而根據中位線定理可得結果;(2)取中點,由(1)知兩兩垂直.以為原點,所在直線分別為軸,軸,軸建立空間直角坐標系,求出面的一個法向量,用表示面的一個法向量,由可得結果.試題解析:(1)證明:連交于,連是矩形,是中點.又面,且是面與面的交線,是的中點.(2)取中點,由(1)知兩兩垂直.以為原點,所在直線分別為軸,軸,軸建立空間直角坐標系(如圖),則各點坐標為.設存在滿足要求,且,則由得:,面的一個法向量為,面的一個法向量為,由,得,解得,故存在,使二面角為直角,此時.20、(1)答案不唯一,具體見解析(2)【解析】

(1)由于函數,得出,分類討論當和時,的正負,進而得出的單調性;(2)求出,令,得,設,通過導函數,可得出在上的單調性和值域,再分類討論和時,的單調性,再結合,恒成立,即可求出的取值范圍.【詳解】解:(1)因為,所以,①當時,,在上單調遞減.②當時,令,則;令,則,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論