




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆四川雅安中學高考考前模擬數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線:(),左焦點到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.2.如圖是國家統計局公布的年入境游客(單位:萬人次)的變化情況,則下列結論錯誤的是()A.2014年我國入境游客萬人次最少B.后4年我國入境游客萬人次呈逐漸增加趨勢C.這6年我國入境游客萬人次的中位數大于13340萬人次D.前3年我國入境游客萬人次數據的方差小于后3年我國入境游客萬人次數據的方差3.已知橢圓:的左,右焦點分別為,,過的直線交橢圓于,兩點,若,且的三邊長,,成等差數列,則的離心率為()A. B. C. D.4.某校為提高新入聘教師的教學水平,實行“老帶新”的師徒結對指導形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導,現選出3位老教師負責指導5位新入聘教師,則不同的師徒結對方式共有()種.A.360 B.240 C.150 D.1205.已知函數的最小正周期為,且滿足,則要得到函數的圖像,可將函數的圖像()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度6.已知集合A={y|y},B={x|y=lg(x﹣2x2)},則?R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)7.已知曲線的一條對稱軸方程為,曲線向左平移個單位長度,得到曲線的一個對稱中心的坐標為,則的最小值是()A. B. C. D.8.已知函數若對區間內的任意實數,都有,則實數的取值范圍是()A. B. C. D.9.已知,則的值構成的集合是()A. B. C. D.10.已知集合,則()A. B.C. D.11.已知是第二象限的角,,則()A. B. C. D.12.我國古代典籍《周易》用“卦”描述萬物的變化.每一“重卦”由從下到上排列的6個爻組成,爻分為陽爻“——”和陰爻“——”.如圖就是一重卦.在所有重卦中隨機取一重卦,則該重卦至少有2個陽爻的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則__________.14.已知拋物線C:y2=4x的焦點為F,準線為l,P為C上一點,PQ垂直l于點Q,M,N分別為PQ,PF的中點,MN與x軸相交于點R,若∠NRF=60°,則|FR|等于_____.15.如圖所示梯子結構的點數依次構成數列,則________.16.已知數列為正項等比數列,,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)a,b,c分別為△ABC內角A,B,C的對邊.已知a=3,,且B=60°.(1)求△ABC的面積;(2)若D,E是BC邊上的三等分點,求.18.(12分)已知在ΔABC中,角A,B,C的對邊分別為a,b,c,且cosB(1)求b的值;(2)若cosB+3sin19.(12分)在平面直角坐標系中,直線的參數方程為(為參數,).在以坐標原點為極點、軸的非負半軸為極軸的極坐標系中,曲線的極坐標方程為.(1)若點在直線上,求直線的極坐標方程;(2)已知,若點在直線上,點在曲線上,且的最小值為,求的值.20.(12分)(選修4-4:坐標系與參數方程)在平面直角坐標系,已知曲線(為參數),在以原點為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)過點且與直線平行的直線交于,兩點,求點到,的距離之積.21.(12分)在平面直角坐標系xOy中,曲線l的參數方程為(為參數),以原點O為極點,x軸非負半軸為極軸建立極坐標系,曲線C的極坐標方程為4sin.(1)求曲線C的普通方程;(2)求曲線l和曲線C的公共點的極坐標.22.(10分)已知中,,,是上一點.(1)若,求的長;(2)若,,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
首先求得雙曲線的一條漸近線方程,再利用左焦點到漸近線的距離為2,列方程即可求出,進而求出漸近線的方程.【詳解】設左焦點為,一條漸近線的方程為,由左焦點到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點睛】本題考查雙曲線的漸近線的方程,考查了點到直線的距離公式,屬于中檔題.2、D【解析】
ABD可通過統計圖直接分析得出結論,C可通過計算中位數判斷選項是否正確.【詳解】A.由統計圖可知:2014年入境游客萬人次最少,故正確;B.由統計圖可知:后4年我國入境游客萬人次呈逐漸增加趨勢,故正確;C.入境游客萬人次的中位數應為與的平均數,大于萬次,故正確;D.由統計圖可知:前年的入境游客萬人次相比于后年的波動更大,所以對應的方差更大,故錯誤.故選:D.【點睛】本題考查統計圖表信息的讀取以及對中位數和方差的理解,難度較易.處理問題的關鍵是能通過所給統計圖,分析出對應的信息,對學生分析問題的能力有一定要求.3、C【解析】
根據等差數列的性質設出,,,利用勾股定理列方程,結合橢圓的定義,求得.再利用勾股定理建立的關系式,化簡后求得離心率.【詳解】由已知,,成等差數列,設,,.由于,據勾股定理有,即,化簡得;由橢圓定義知的周長為,有,所以,所以;在直角中,由勾股定理,,∴離心率.故選:C【點睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數列的性質,屬于中檔題.4、C【解析】
可分成兩類,一類是3個新教師與一個老教師結對,其他一新一老結對,第二類兩個老教師各帶兩個新教師,一個老教師帶一個新教師,分別計算后相加即可.【詳解】分成兩類,一類是3個新教師與同一個老教師結對,有種結對結對方式,第二類兩個老教師各帶兩個新教師,有.∴共有結對方式60+90=150種.故選:C.【點睛】本題考查排列組合的綜合應用.解題關鍵確定怎樣完成新老教師結對這個事情,是先分類還是先分步,確定方法后再計數.本題中有一個平均分組問題.計數時容易出錯.兩組中每組中人數都是2,因此方法數為.5、C【解析】
依題意可得,且是的一條對稱軸,即可求出的值,再根據三角函數的平移規則計算可得;【詳解】解:由已知得,是的一條對稱軸,且使取得最值,則,,,,故選:C.【點睛】本題考查三角函數的性質以及三角函數的變換規則,屬于基礎題.6、D【解析】
求函數的值域得集合,求定義域得集合,根據交集和補集的定義寫出運算結果.【詳解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴?R(A∩B)=(﹣∞,0]∪[,+∞).故選:D.【點睛】該題考查的是有關集合的問題,涉及到的知識點有函數的定義域,函數的值域,集合的運算,屬于基礎題目.7、C【解析】
在對稱軸處取得最值有,結合,可得,易得曲線的解析式為,結合其對稱中心為可得即可得到的最小值.【詳解】∵直線是曲線的一條對稱軸.,又..∴平移后曲線為.曲線的一個對稱中心為..,注意到故的最小值為.故選:C.【點睛】本題考查余弦型函數性質的應用,涉及到函數的平移、函數的對稱性,考查學生數形結合、數學運算的能力,是一道中檔題.8、C【解析】分析:先求導,再對a分類討論求函數的單調區間,再畫圖分析轉化對區間內的任意實數,都有,得到關于a的不等式組,再解不等式組得到實數a的取值范圍.詳解:由題得.當a<1時,,所以函數f(x)在單調遞減,因為對區間內的任意實數,都有,所以,所以故a≥1,與a<1矛盾,故a<1矛盾.當1≤a<e時,函數f(x)在[0,lna]單調遞增,在(lna,1]單調遞減.所以因為對區間內的任意實數,都有,所以,所以即令,所以所以函數g(a)在(1,e)上單調遞減,所以,所以當1≤a<e時,滿足題意.當a時,函數f(x)在(0,1)單調遞增,因為對區間內的任意實數,都有,所以,故1+1,所以故綜上所述,a∈.故選C.點睛:本題的難點在于“對區間內的任意實數,都有”的轉化.由于是函數的問題,所以我們要聯想到利用函數的性質(單調性、奇偶性、周期性、對稱性、最值、極值等)來分析解答問題.本題就是把這個條件和函數的單調性和最值聯系起來,完成了數學問題的等價轉化,找到了問題的突破口.9、C【解析】
對分奇數、偶數進行討論,利用誘導公式化簡可得.【詳解】為偶數時,;為奇數時,,則的值構成的集合為.【點睛】本題考查三角式的化簡,誘導公式,分類討論,屬于基本題.10、B【解析】
先由得或,再計算即可.【詳解】由得或,,,又,.故選:B【點睛】本題主要考查了集合的交集,補集的運算,考查學生的運算求解能力.11、D【解析】
利用誘導公式和同角三角函數的基本關系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因為,由誘導公式可得,,即,因為,所以,由二倍角的正弦公式可得,,所以.故選:D【點睛】本題考查誘導公式、同角三角函數的基本關系和二倍角的正弦公式;考查運算求解能力和知識的綜合運用能力;屬于中檔題.12、C【解析】
利用組合的方法求所求的事件的對立事件,即該重卦沒有陽爻或只有1個陽爻的概率,再根據兩對立事件的概率和為1求解即可.【詳解】設“該重卦至少有2個陽爻”為事件.所有“重卦”共有種;“該重卦至少有2個陽爻”的對立事件是“該重卦沒有陽爻或只有1個陽爻”,其中,沒有陽爻(即6個全部是陰爻)的情況有1種,只有1個陽爻的情況有種,故,所以該重卦至少有2個陽爻的概率是.故選:C【點睛】本題主要考查了對立事件概率和為1的方法求解事件概率的方法.屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
直接根據集合和集合求交集即可.【詳解】解:,,所以.故答案為:【點睛】本題考查集合的交集運算,是基礎題.14、2【解析】
由題意知:,,,.由∠NRF=60°,可得為等邊三角形,MF⊥PQ,可得F為HR的中點,即求.【詳解】不妨設點P在第一象限,如圖所示,連接MF,QF.∵拋物線C:y2=4x的焦點為F,準線為l,P為C上一點∴,.∵M,N分別為PQ,PF的中點,∴,∵PQ垂直l于點Q,∴PQ//OR,∵,∠NRF=60°,∴為等邊三角形,∴MF⊥PQ,易知四邊形和四邊形都是平行四邊形,∴F為HR的中點,∴,故答案為:2.【點睛】本題主要考查拋物線的定義,屬于基礎題.15、【解析】
根據圖像歸納,根據等差數列求和公式得到答案.【詳解】根據圖像:,,故,故.故答案為:.【點睛】本題考查了等差數列的應用,意在考查學生的計算能力和應用能力.16、27【解析】
利用等比數列的性質求得,結合其下標和性質和均值不等式即可容易求得.【詳解】由等比數列的性質可知,則,.當且僅當時取得最小值.故答案為:.【點睛】本題考查等比數列的下標和性質,涉及均值不等式求和的最小值,屬綜合基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)根據正弦定理,可得△ABC為直角三角形,然后可計算b,可得結果.(2)計算,然后根據余弦定理,可得,利用平方關系,可得結果.【詳解】(1)△ABC中,由csinC=asinA+bsinB,利用正弦定理得c2=a2+b2,所以△ABC是直角三角形.又a=3,B=60°,所以;所以△ABC的面積為.(2)設D靠近點B,則BD=DE=EC=1.,所以所以.【點睛】本題考查正弦定理的應用,屬基礎題.18、(1)b=32【解析】試題分析:(1)本問考查解三角形中的的“邊角互化”.由于求b的值,所以可以考慮到根據余弦定理將cosB,cosC分別用邊表示,再根據正弦定理可以將sinAsinC轉化為ac,于是可以求出b的值;(2)首先根據sinB+3cosB=2求出角B的值,根據第(1)問得到的b值,可以運用正弦定理求出ΔABC外接圓半徑R,于是可以將a+c轉化為2RsinA+2R試題解析:(1)由cosB應用余弦定理,可得a2化簡得2b=3則b=(2)∵cos∴12cos∵B∈(0,π)∴B+π6=法一.∵2R=b則a+c==sin=3=3sin又∵0<A<2π3,法二因為b=32得34又因為ac≤(a+c2)2所以34=(a+c)∴a+c≤3又由三邊關系定理可知綜上a+c∈(考點:1.正、余弦定理;2.正弦型函數求值域;3.重要不等式的應用.19、(1)(2)【解析】
(1)利用消參法以及點求解出的普通方程,根據極坐標與直角坐標的轉化求解出直線的極坐標方程;(2)將的坐標設為,利用點到直線的距離公式結合三角函數的有界性,求解出取最小值時對應的值.【詳解】(1)消去參數得普通方程為,將代入,可得,即所以的極坐標方程為(2)的直角坐標方程為直線的直角坐標方程設的直角坐標為∵在直線上,∴的最小值為到直線的距離的最小值∵,∴當,時取得最小值即,∴【點睛】本題考查直線的參數方程、普通方程、極坐標方程的互化以及根據曲線上一點到直線距離的最值求參數,難度一般.(1)直角坐標和極坐標的互化公式:;(2)求解曲線上一點到直線的距離的最值,可優先
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 礦物基絕熱材料的研發考核試卷
- 環境設計畢設答辯
- 呼吸機轉運病人操作規范與流程
- 喉軟化病人麻醉管理
- 人體的營養和呼吸
- 睡眠呼吸暫停低通氣綜合癥
- 新青年麻醉學科核心課程體系建設
- 手衛生依從性監測數據解讀
- 自然語言及語音處理項目式教程 習題庫 02-多選題
- 供應鏈金融創新應用2025:中小微企業融資新策略解析
- 第四篇-皮膚科疾病臨床評分表
- 淺析韋伯《邀舞》
- 房地產中介創業計劃書
- PICC堵管原因分析腫一10.11
- 《城市地理學》課件
- 化工與安全工程
- 腦梗塞介入取栓護理查房課件
- 2024屆上海市普陀區上海師大附中化學高二下期末綜合測試試題含解析
- 循環經濟產業鏈拓展項目商業計劃書
- GB/T 43295-2023教育與學習服務遠程學習服務要求
- 校園網絡文化建設課件
評論
0/150
提交評論