高中數學說課稿18篇_第1頁
高中數學說課稿18篇_第2頁
高中數學說課稿18篇_第3頁
高中數學說課稿18篇_第4頁
高中數學說課稿18篇_第5頁
已閱讀5頁,還剩45頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

高中數學說課稿18篇高中數學說課稿集合一、教材分析:集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。二、目標分析:教學重點、難點重點:集合的含義與表示方法。難點:表示法的恰當選擇。教學目標1.知識與技能(1)通過實例,了解集合的含義,體會元素與集合的屬于關系;(2)知道常用數集及其專用記號;(3)了解集合中元素的確定性。互異性。無序性;(4)會用集合語言表示有關數學對象;2.過程與方法(1)讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義。(2)讓學生歸納整理本節所學知識。3.情感、態度與價值觀使學生感受到學習集合的必要性,增強學習的積極性。三、教法分析1.教學方法:學生通過閱讀教材,自主學習。思考。交流。討論和概括,從而更好地完成本節課的教學目標。2.教學手段:在教學中使用投影儀來輔助教學。四、過程分析(一)創設情景,揭示課題1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現在的班級。(2)問題:像"家庭"、"學校"、"班級"等,有什么共同特征?引導學生互相交流。與此同時,教師對學生的活動給予評價。2.活動:(1)列舉生活中的集合的例子;(2)分析、概括各實例的共同特征由此引出這節要學的內容。設計意圖:既激發了學生濃厚的學習興趣,又為新知作好鋪墊(二)研探新知,建構概念1.教師利用多媒體設備向學生投影出下面7個實例:(1)1-20以內的所有質數;(2)我國古代的四大發明;(3)所有的安理會常任理事國;(4)所有的正方形;(5)海南省在20xx年9月之前建成的所有立交橋;(6)到一個角的兩邊距離相等的所有的點;(7)國興中學20xx年9月入學的高一學生的全體。2.教師組織學生分組討論:這7個實例的共同特征是什么?3.每個小組選出--位同學發表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義。一般地,指定的某些對象的全體稱為集合(簡稱為集)。集合中的每個對象叫作這個集合的元素。4.教師指出:集合常用大寫字母A,B,C,D,…表示,元素常用小寫字母…表示。設計意圖:通過實例讓學生感受集合的概念,激發學習的興趣,培養學生樂于求索的精神(三)質疑答辯,發展思維1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難。使學生明確集合元素的三大特性,即:確定性。互異性和無序性。只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等。2.教師組織引導學生思考以下問題:判斷以下元素的全體是否組成集合,并說明理由:(1)大于3小于11的偶數;(2)我國的小河流。讓學生充分發表自己的`建解。3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由。教師對學生的學習活動給予及時的評價。4.教師提出問題,讓學生思考(1)如果用A表示高一(3)班全體學生組成的集合,用表示高一(3)班的一位同學,是高一(4)班的一位同學,那么與集合A分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于。如果是集合A的元素,就說屬于集合A,記作。如果不是集合A的元素,就說不屬于集合A,記作。(2)如果用A表示"所有的安理會常任理事國"組成的集合,則中國。日本與集合A的關系分別是什么?請用數學符號分別表示。(3)讓學生完成教材第6頁練習第1題。5.教師引導學生回憶數集擴充過程,然后閱讀教材中的相交內容,寫出常用數集的記號。并讓學生完成習題1.1A組第1題。6.教師引導學生閱讀教材中的相關內容,并思考。討論下列問題:(1)要表示一個集合共有幾種方式?(2)試比較自然語言。列舉法和描述法在表示集合時,各自有什么特點?適用的對象是什么?(3)如何根據問題選擇適當的集合表示法?使學生弄清楚三種表示方式的優缺點和體會它們存在的必要性和適用對象。設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優缺點,從而突破難點。(四)鞏固深化,反饋矯正教師投影學習:(1)用自然語言描述集合{1,3,5,7,9};(2)用例舉法表示集合(3)試選擇適當的方法表示下列集合:教材第6頁練習第2題。設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象(五)歸納小結,布置作業小結:在師生互動中,讓學生了解或體會下例問題:1.本節課我們學習了哪些知識內容?2.你認為學習集合有什么意義?3.選擇集合的表示法時應注意些什么?設計意圖:通過回顧,對概念的發生與發展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。作業:1.課后書面作業:第13頁習題1.1A組第4題。2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種呢?如何表示?請同學們通過預習教材。高中數學說課稿“變量間的相關關系”一、教材分析本節是人教A版高中數學必修三第二章《統計》中的第三節“變量間的相關關系”的第二課時。在上一課時,學生已經懂得根據兩個相關變量的數據作出散點圖,并利用散點圖直觀認識變量間的相關關系。這節課是在上一節課的基礎上介紹了用線性回歸的方法研究兩個變量的相關性和最小二乘法的思想。從全章的內容上看,線性回歸方程的建立不僅是本節的難點,也是本章內容的難點之一。線性回歸是最簡單的回歸分析,學好回歸分析是學好統計學的重要基礎。二、教學目標根據課標的要求及前面的分析,結合高二學生的認知特點確定本節課的教學目標如下:知識與技能:1.知道最小二乘法和回歸分析的思想;2.能根據線性回歸方程系數公式求出回歸方程過程與方法:經歷線性回歸分析過程,借助圖形計算器得出回歸直線,增強數學應用和使用技術的意識。情感態度與價值觀通過合作學習,養成傾聽別人意見和建議的良好品質三、重點難點分析:根據目標分析,確定教學重點和難點如下:教學重點:1.知道最小二乘法和回歸分析的思想;2.會求回歸直線教學難點:建立回歸思想,會求回歸直線四、教學設計提出問題理論探究驗證結論小結提升應用實踐作業設計教學環節內容及說明創設情境探究:在一次對人體脂肪含量和年齡關系的研究中,研究人員獲得了一組樣本數據:問題與引導設計師生活動設計意圖問題1.利用圖形計算器作出散點圖,并指出上面的兩個變量是正相關還是負相關?教師提問,學生通過動手操作得出散點圖并回答以舊“探”新:對舊的'知識進行簡要的提問復習,為本節課學生能夠更好的建構新的知識做好充分的準備;尤其為一些后進生能夠順利的完成本節課的內容提供必要的基礎。教師引導:通過上節課的學習,我們知道散點圖是研究兩個變量相關關系的一種重要手段。下面,請同學們根據得出的散點圖,思考下面的問題2.問題2.甲同學判斷某人年齡在65歲時體內脂肪含量百分比可能為34,乙同學判斷可能為25,而丙同學則判斷可能為37,你對甲,乙,丙三個同學的判斷有什么看法?學生能夠表達自己的看法。有的學生可能會認為乙同學的判斷是錯誤的;有的學生可能認為甲乙丙三個同學的判斷都是對的,答案不唯一該問題具有探究性、啟發性和開放性。鼓勵學生大膽表達自己的看法。通過設計該問題,引導學生自己發現問題,注意到散點圖中點的分布具有一定規律,體會觀測點與回歸直線的關系;進而引起學生的對本節課內容的興趣。問題3.反思問題,你還可以提出哪些問題嗎?小組討論,看哪個小組提出的問題多在小組討論的形式下和比較哪個小組提出的問題多,學生之間會充分的進行交流,提出問題通過小組討論比較,調動學生的學習積極性和興趣,活躍課堂氣氛,達到學生自己提出問題的效果,培養學生的學生創新思維和問題意識。學生可能提出的問題:①為什么甲、丙同學的判斷結果正確的可能性較大,而乙同學判斷結果正確的可能性較小?②某人年齡在65歲時體內脂肪含量百分比最可能是多少?在其它年齡時呢?③這些樣本數據揭示出兩個相關變量之間怎樣的關系呢?④怎樣用數學的方法研究變量之間的相關關系呢?每個問題都是學生“火熱的思考”成果高中數學說課稿《正弦定理》尊敬的各位老師:大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設計。一、教材分析本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:認知目標:通過創設問題情境,引導學生發現正弦定理的內容,掌握正弦定理的內容及其證明方法,使學生會運用正弦定理解決兩類基本的解三角形問題。能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,激發學生學習的興趣。教學重點:正弦定理的內容,正弦定理的證明及基本應用。教學難點:已知兩邊和其中一邊的對角解三角形時判斷解的個數。二、教法根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想,采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。三、學法指導學生掌握“觀察--猜想--證明--應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。四、教學過程(一)創設情境(3分鐘)“興趣是最好的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。(二)猜想-推理-證明(15分鐘)激發學生思維,從自身熟悉的`特例(直角三角形)入手進行研究,發現正弦定理。提問:那結論對任意三角形都適用嗎?(讓學生分小組討論,并得出猜想)在三角形中,角與所對的邊滿足關系注意:1.強調將猜想轉化為定理,需要嚴格的理論證明。2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。(三)總結--應用(3分鐘)1.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。2.運用正弦定理求解本節課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。(四)講解例題(8分鐘)1.例1.在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。(五)課堂練習(8分鐘)在△ABC中,已知下列條件,解三角形(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm2.在△ABC中,已知下列條件,解三角形.(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°學生板演,老師巡視,及時發現問題,并解答。(六)小結反思(3分鐘)1.它表述了三角形的邊與對角的正弦值的關系。2.定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。3.會用向量作為數形結合的工具,將幾何問題轉化為代數問題。五、教學反思從實際問題出發,通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。高中數學說課稿《算法的概念》尊敬的老師:大家好!我叫xxx,來自***。我說課的題目是《算法的概念》,內容選自于新課程人教A版必修3第一章第一節,課時安排為兩個課時,本節課內容為第一課時。下面我將從教材分析、教學目標分析、教學方法分析、學情分析、教學過程分析等五大方面來闡述我對這節課的分析和設計:一、教材分析1、教材所處的地位和作用現代社會是一個信息技術發展很快的社會,算法進入高中數學正是反映了時代的需要,它是當今社會必備的基礎知識,算法的學習是使用計算機處理問題前的一個必要的步驟,它可以讓學生們知道如何利用現代技術解決問題。又由于算法的具體實現上可以和信息技術相結合。因此,算法的學習十分有利于提高學生的邏輯思維能力,培養學生的理性精神和實踐能力。2、教學的重點和難點重點:初步理解算法的定義,體會算法思想,能夠用自然語言描述算法難點:把自然語言轉化為算法語言。二、教學目標分析1、知識目標:了解算法的含義,體會算法的思想;能夠用自然語言描述解決具體問題的算法;理解正確的算法應滿足的要求。2、能力目標:讓學生感悟人們認識事物的一般規律:由具體到抽象,再有抽象到具體,培養學生的觀察能力,表達能力和邏輯思維能力。3、情感目標:對計算機的算法語言有一個基本的了解,明確算法的要求,認識到計算機是人類征服自然的一有力工具,進一步提高探索、認識世界的能力。三、教學方法分析采用"問題探究式"教學法,以多媒體為輔助手段,讓學生主動發現問題、分析問題、解決問題,培養學生的探究論證、邏輯思維能力。四、學情分析算法這部分的使用性很強,與日常生活聯系緊密,雖然是新引入的章節,但很容易激發學生的學習興趣。在教師的引導下,通過多媒體輔助教學,學生比較容易掌握本節課的內容。五、教學過程分析1、創設情景:我首先向學生們展示章頭圖,介紹圖中的后景是取自宋朝數學家朱世杰的數學作品《四元玉鑒》,告訴學生們章頭圖正是體現了中國古代數學與現代計算機科學的聯系,它們的基礎都是"算法"。「設計意圖」是為了充分挖掘章頭圖的教學價值,體現:1)算法概念的由來;2)我們將要學習的算法與計算機有關;3)展示中國古代數學的成就;4)激發學生學習算法的興趣。從而順其自然的過渡到本節課要討論的話題。(約4分鐘)2、引入新課:在這一環節我首先和學生們一起回顧如何解二元一次方程組,并引導他們歸納二元一次方程組的求解步驟,從而讓學生經歷算法分析的基本過程,培養思維的條理性,引導學生關注更具一般性解法,形成解法向算法過渡的準備,為建立算法概念打下基礎。緊接著在此基礎上進一步復習回顧解一般的二元一次方程組的步驟,引導學生分析解題過程的結構,寫出求一般的二元一次方程組的解的算法,并把它編成程序,讓學生輸入數據,體驗計算機直接給出方程組的解。目的是讓學生明白算法是用來解決某一類問題的,從而提高學生對算法的普遍適用性的認識,為建立算法的概念做好鋪墊。之后,我就向學生們提出問題:到底什么是算法?如何用語言來表達算法的涵義?這里讓學生們根據剛剛的探索交流、思考并回答,然后老師進行歸納,得出算法的基本概念,并幫助學生認識算法的概念,指出有窮性,確定性,可行性。這樣可以讓學生們真正參與到算法概念的形成過程中來,體會算法思想。(約8分鐘)3、例題講解:在這一環節我安排了兩道例題,以幫助學生們能更好地理解算法的基本概念,并應用到實際解決問題中去,而不只是單純的對數學思想的領悟。這兩道例題均選自課本的例1和例2。例1是讓我們設定一個程序以判斷一個數是否為質數。質數是我們之前已經學習的內容,為了能更順利地完成解題過程,這里有必要引導學生們回顧一下質數應滿足的條件,然后再根據這個來探索解題步驟。通過例1讓學生認識到求解結構中存在"重復"。為導出一般問題的算法創造條件,也為學習算法的自然語言表示提供前提。告訴學生們本算法就是用自然語言的形式描述的。并且設計算法一定要做到以下要求:(1)寫出的算法必須能解決一類問題,并且能夠重復使用。(2)要使算法盡量簡單、步驟盡量少。(3)要保證算法正確,且計算機能夠執行。在例1的基礎上我們繼續研究例2,例2是要求我們設計一個利用二分法來求解方程的.近似根的程序。我們首先要對算法作分析,回顧用二分法求解方程近似根的過程,然后設計出解題步驟。二分法是算法中的經典問題,具有明顯的順序和可操作的特點。因此通過例2可以讓學生進一步了解算法的邏輯結構,領會算法的思想,體會算法的的特征。同時也可以鞏固用自然語言描述算法,提高用自然語言描述算法的表達水平。另外,借助例題加強學生對算法概念的理解,體會算法具有程序性、有限性、構造性、精確性、指向性的特點,算法以問題為載體,泛泛而談沒有意義。(約20分鐘)4、課堂小結:(1)算法的概念和算法的基本特征(2)算法的描述方法,算法可以用自然語言描述。(3)能利用算法的思想和方法解決實際問題,并能寫出一此簡單問題的算法課堂小結是一堂課內容的概括和總結,有利于學生把握本節課的重點,對所學知識有一個系統整體的認識。(約6分鐘)5、布置作業:課本練習1、2題課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。對作業實施分層設置,分必做和選做,利于拓展學生的自主發展的空間。高中數學說課稿《系統抽樣》尊敬的老師:大家好!我叫xxx。我說課的題目是《系統抽樣》,內容選自于蘇教版必修3第二章第一節,課時安排為一個課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析等五大方面來闡述我對這節課的分析和設計:一、教材分析1.教材所處的地位和作用學生已初步了解掌握了簡單隨機抽樣的兩種方法,即抽簽法與隨機數表法,在此基礎上進一步學習系統抽樣,它也是“統計學”的重要組成部分,通過對系統抽樣的學習,更加突出統計在日常生活中的應用,體現它在中學數學中的地位。2教學的重點和難點重點:正確理解系統抽樣的概念,能夠靈活應用系統抽樣的方法解決統計問題。難點:當不是整數時的處理辦法,個體編號具有某種周期性時,“壞樣本”的理解。二、教學目標分析1、知識與技能目標:(1)正確理解系統抽樣的概念;(2)掌握系統抽樣的一般步驟;(3)正確理解系統抽樣與簡單隨機抽樣的關系;2、過程與方法目標:通過對實際問題的探究,歸納應用數學知識解決實際問題的方法,理解分類討論的數學方法高考資源3、情感態度與價值觀目標:通過數學活動,感受數學對實際生活的需要,體會現實世界和數學知識的聯系三、教學方法與手段分析1.教學方法:為了充分讓學生自己分析、判斷、自主學習、合作交流。因此,我采用討論發現法教學。2.教學手段:通過各種教學媒體(計算機)調動學生參與課堂教學的主動性與積極性。四、教學過程分析(一)新課引入1、復習提問:(1)什么是簡單隨機抽樣?有哪兩種方法?(2)抽簽法與隨機數表法的一般步驟是什么?(3)簡單隨機抽樣應注意哪兩個原則?(4)什么樣的總體適合簡單隨機抽樣?為什么?[設計意圖]通過復習提問進一步理解掌握簡單隨機抽樣的概念方法和步驟?為新課學習打基礎2、實例探究實例:某學校為了了解高一年級學生對教師教學的意見,打算從高一年級500名學生中抽取50名進行調查,除了用簡單隨機抽樣獲取樣本外,你能否設計其他抽取樣本的`方法?當總體數量較多時,應當如何抽取?結合具體事例探究問題,設計你的抽取樣本的方法。抽取的樣本公平性與代表性如何?學生自主探究后小組討論回答。[設計意圖]通過設置問題情境,讓學生參與問題解決的全過程,引導學生探究發現新知識新方法,完成從總體中抽取樣本,并發現“等距抽樣”的特性,從而形成感性的系統抽樣的概念與方法。這樣做既充分體現學生的主體地位和教師的主導作用,同時也較好地貫徹新課程所倡導“自主探究、合作交流”的學習方式。(二)新課講授1、系統抽樣的概念方法步驟(學生閱讀課本上的內容,教師引導學生總結歸納得出“系統抽樣”的概念,并點明課題)[設計意圖]經歷實例探究過程,學生對系統抽樣的概念方法步驟應有大致了解,輔以教師引導,從具體到一般,本節新課題的學習便水到渠成。2、典型例題精析例1、某校高中三年級的300名學生已經編號為1,2,……,300,為了了解學生的學習情況,要按10%的比例抽取一個樣本,請用系統抽樣的方法進行抽取,并寫出過程。(教師題意分析,引導學生應用新知識新方法,學生分析思考,探究解題,小組討論后口述解題過程)[設計意圖]實例鞏固,在得出新課的有關知識之后,再次讓學生在解決實際問題的過程中,進一步理解掌握系統抽樣的方法步驟,達到學以致用的技能,培養“學數學,用數學”的意識。例2、某單位在職職工共624人,為了調查工人用于上班途中的時間,決定抽取10%的工人進行調查,試采用系統抽樣方法抽取所需的樣本。[設計意圖]當不是整數時,設置本題讓學生嘗試回答,并形成一般思路與方法。(三)練習鞏固1、將全班學生按男女生交替排成一路縱隊,用擲骰的方法在前6名學生中任選一名,用表示該名學生在隊列中的序號,將隊列中序號為,(k=1,2,3,…)的學生抽出作為樣本,這種抽樣方法叫做系統抽樣嗎?為什么?其樣本的代表性與公平性如何?2、若按體重大小次序排成一路縱隊呢?[設計意圖]配合課本第60頁“邊空”問題:“請將這種抽樣方法與簡單隨機抽樣做一個比較,你認為系統抽樣能提高樣本的代表性嗎?為什么?”,幫助理解個體編號具有某種周期性時,樣本代表性較差的特點。同時分析系統抽樣的優點與缺點。(四)回顧小結1、師生共同回顧系統抽樣的概念方法與步驟2、與簡單隨機抽樣比較,系統抽樣適合怎樣的總體情況?3、當不是整數時,一般步驟是什么?此時樣本的公平性與代表性如何?(五)布置作業課本第61頁的練習第1,2,3題設計意圖:課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。高中數學說課稿《橢圓及其標準方程》一、教學背景分析(一)教材地位分析:《橢圓及其標準方程》是繼學習圓以后運用“曲線與方程”思想解決二次曲線問題的又一實例,從知識上說,本節課是對坐標法研究幾何問題的又一次實際運用,同時也是進一步研究橢圓幾何性質的基礎;從方法上說,它為進一步研究雙曲線、拋物線提供了基本模式和理論基礎,因此本節課起到了承上啟下的重要作用、(二)重點、難點分析:本節課的重點是橢圓的定義及其標準方程,標準方程的推導是本節課的難點,要突破這一難點,關鍵是引導學生正確選擇去根式的策略、(三)學情分析:在學習本節課前,學生已經學習了直線與圓的方程,對曲線和方程的思想方法有了一些了解和運用的經驗,對坐標法研究幾何問題也有了初步的認識,因此,學生已經具備探究有關點的軌跡問題的知識基礎和學習能力,但由于學生學習解析幾何還不長、學習程度也較淺,并且還受到這一年齡段學習心理和認知結構的影響,在學習過程中難免會有些困難、如:由于學生對運用坐標法解決幾何問題掌握還不夠,因此從研究圓到橢圓,學生思維上會存在障礙、二、教學目標設計(一)知識目標:掌握橢圓的定義及其標準方程;會根據條件寫出橢圓的標準方程;通過對橢圓標準方程的探求,再次熟悉求曲線方程的一般方法、(二)能力目標:學生通過動手畫橢圓、分組討論探究橢圓定義、推導橢圓標準方程等過程,提高動手能力、學習能力和運用知識解決實際問題的能力、(三)情感目標:在形成知識、提高能力的過程中,激發學生學習數學的興趣,提高學生的審美情趣,培養學生勇于探索、敢于創新的、三、教法學法設計為了更好地培養學生自主學習能力,提高學生的綜合素質,我主要采用探究式教學方法、一方面我通過設置情境、問題誘導充分發揮主導作用;另一方面學生通過對我提供的素材進行直觀觀察→動手操作→討論探究→歸納抽象→總結規律的過程充分體現主體地位、使用多媒體輔助教學與自制教具相結合的設計,實現多媒體快捷、形象、大容量的優勢與自制教具直觀、的優勢的結合,既突出了知識的產生過程,又增加了課堂的趣味性、1、掌握橢圓的定義,掌握橢圓標準方程的兩種形式及其推導過程;2、能根據條件確定橢圓的標準方程,掌握運用待定系數法求橢圓的標準方程;3、通過對橢圓概念的引入教學,培養學生的觀察能力和探索能力;4、通過橢圓的標準方程的推導,使學生進一步掌握求曲線方程的一般方法,并滲透數形結合和等價轉化的思想方法,提高運用坐標法解決幾何問題的能力;5、通過讓學生大膽探索橢圓的定義和標準方程,激發學生學習數學的積極性,培養學生的學習興趣和創新意識、四、教學建議教材分析1、知識結構2、重點難點分析重點是橢圓的定義及橢圓標準方程的兩種形式、難點是橢圓標準方程的建立和推導、關鍵是掌握建立坐標系與根式化簡的方法。橢圓及其標準方程這一節教材整體來看是兩大塊內容:一是橢圓的定義;二是橢圓的標準方程、橢圓是圓錐曲線這一章所要研究的三種圓錐曲線中首先遇到的`,所以教材把對橢圓的研究放在了重點,在雙曲線和拋物線的教學中鞏固和應用、先講橢圓也與第七章的圓的方程銜接自然、學好橢圓對于學生學好圓錐曲線是非常重要的。(1)對于橢圓的定義的理解,要抓住橢圓上的點所要滿足的條件,即橢圓上點的幾何性質,可以對比圓的定義來理解、另外要注意到定義中對“常數”的限定即常數要大于、這樣規定是為了避免出現兩種特殊情況,即:“當常數等于時軌跡是一條線段;當常數小于時無軌跡”。這樣有利于集中精力進一步研究橢圓的標準方程和幾何性質、但講解橢圓的定義時注意不要忽略這兩種特殊情況,以保證對橢圓定義的準確性。(2)根據橢圓的定義求標準方程,應注意下面幾點:①曲線的方程依賴于坐標系,建立適當的坐標系,是求曲線方程首先應該注意的地方、應讓學生觀察橢圓的圖形或根據橢圓的定義進行推理,發現橢圓有兩條互相垂直的對稱軸,以這兩條對稱軸作為坐標系的兩軸,不但可以使方程的推導過程變得,而且也可以使最終得出的方程形式整齊和簡潔。②設橢圓的焦距為,橢圓上任一點到兩個焦點的距離為,令,這些措施,都是為了簡化推導過程和最后得到的方程形式整齊、簡潔,要讓學生認真領會、③在方程的推導過程中遇到了無理方程的化簡,這既是我們今后在求軌跡方程時經常遇到的問題,又是學生的難點、要注意說明這類方程的化簡方法:①方程中只有一個根式時,需將它單獨留在方程的一側,把其他項移至另一側;②方程中有兩個根式時,需將它們分別放在方程的兩側,并使其中一側只有一項、④教科書上對橢圓標準方程的推導,實際上只給出了“橢圓上點的坐標都適合方程“而沒有證明,”方程的解為坐標的點都在橢圓上”、這實際上是方程的同解變形問題,難度較大,對同學們不作要求。(3)兩種標準方程的橢圓異同點中心在原點、焦點分別在軸上,軸上的橢圓標準方程分別為:它們的相同點是:形狀相同、大小相同,不同點是:兩種橢圓相對于坐標系的位置不同,它們的焦點坐標也不同、橢圓的焦點在軸上標準方程中項的分母較大;橢圓的焦點在軸上標準方程中項的分母較大、另外,形如中,只要,同號,就是橢圓方程,它可以化為。(4)教科書上通過例3介紹了另一種求軌跡方程的常用方法--中間變量法、例3有三個作用:是教給學生利用中間變量求點的軌跡的方法;第二是向學生說明,如果求得的點的軌跡的方程形式與橢圓的標準方程相同,那么這個軌跡是橢圓;第三是使學生知道,一個圓按某一個方向作伸縮變換可以得到橢圓。高中數學說課稿《一元二次不等式的解法》尊敬的老師:大家好!我叫李xx,來***市第一中學。今天我說課的課題是《一元二次不等式的解法》(第一課時)。下面我將圍繞本節課"教什么?"、"怎樣教?"以及"為什么這樣教?"三個問題,從教材內容分析、教法學法分析、教學過程分析和課堂意外預案等幾個方面逐一加以分析和說明。一、教材內容分析:1.本節課內容在整個教材中的地位和作用。概括地講,本節課內容的地位體現在它的基礎性,作用體現在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續和深化,對已學習過的集合知識的鞏固和運用具有重要的作用,也與后面的函數、數列、三角函數、線形規劃、直線與圓錐曲線以及導數等內容密切相關。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數學教學中具有很強的基礎性,體現出很大的工具作用。2.教學目標定位。根據教學大綱要求、高考考試大綱說明、新課程標準精神、高一學生已有的知識儲備狀況和學生心理認知特征,我確定了四個層面的教學目標。第一層面是面向全體學生的知識目標:熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數三者的關系。第二層面是能力目標,培養學生運用數形結合與等價轉化等數學思想方法解決問題的能力,提高運算和作圖能力。第三層面是德育目標,通過對解不等式過程中等與不等對立統一關系的認識,向學生逐步滲透辨證唯物主義思想。第四層面是情感目標,在教師的啟發引導下,學生自主探究,交流討論,培養學生的合作意識和創新精神。3.教學重點、難點確定。本節課是在復習了一次不等式的解法之后,利用二次函數的圖象研究一元二次不等式的解法。只要學生能夠理解一元二次方程、一元二次不等式和二次函數三者的關系,并利用其關系解不等式即可。因此,我確定本節課的教學重點為一元二次不等式的解法,關鍵是一元二次方程、一元二次不等式和二次函數三者的關系。二、教法學法分析:數學是發展學生思維、培養學生良好意志品質和美好情感的重要學科,在教學中,我們不僅要使學生獲得知識、提高解題能力,還要讓學生在教師的啟發引導下學會學習、樂于學習,感受數學學科的人文思想,使學生在學習中培養堅強的意志品質、形成良好的道德情感。為了更好地體現課堂教學中"教師為主導,學生為主體"的教學關系和"以人為本,以學定教"的教學理念,在本節課的教學過程中,我將緊緊圍繞教師組織--啟發引導,學生探究--交流發現,組織開展教學活動。我設計了:①創設情景--引入新課②交流探究--發現規律③啟發引導--形成結論④練習小結--深化鞏固⑤思維拓展--提高能力,五個環環相扣、層層深入的教學環節,在教學中注意關注整個過程和全體學生,充分調動學生積極參與教學過程的每個環節。三、教學過程分析:1.創設情景--引入新課。我們常說"興趣是最好的老師",長期以來,學生對學習數學缺乏興趣,甚至失去信心,一個重要的原因,是老師在教學中不重視學生對學習的情感體驗,教學應該充分考慮學生的情感和需要,想方設法讓學生在學習中樹立信心,感受學習的樂趣。根據教材內容的安排,我以學生熟悉的畫一次函數圖象、求一次方程和一次不等式的解為背景知識切入,設置一個練習題組,一方面讓學生總結復習已有知識,為后面學習二次不等式的解法打下基礎,做好鋪墊,另一方面,使學生在自己熟悉的問題中首先獲得解題成功的快樂體驗,然后以2004年江蘇省的一道高考試題為引子,引入本節課的新授內容。對于本題,引導學生,利用上面解練習題組1的方法,畫出二次函數圖象來解答。二次函數是初中數學的重要內容,本題又給出了函數圖象上許多點,相信學生畫出圖象應該不成問題,只要教師適當點撥,學生不難得到正確答案。以高考試題為背景引入新課,可以提高學生興趣,抓住學生眼球,吸引學生注意力,還可以讓學生實實在在感受到,高考題就在我們的課本中,就在我們平常的練習中。2.探究交流--發現規律。從特殊到一般是我們發現問題、尋求規律、揭示問題本質最常用的方法之一。我把課本例題1、2編為練習題組(一),交由學生用上面解高考題的方法--圖象法去解,學生由于熟知二次函數圖象,求解應該不會有太大的問題。在這個過程中,教師要啟發引導學生注意對比兩題的異同,組織引導學生展開交流討論,探討第(2)題能不能先把二次項系數化正以后再構造函數畫圖求解。然后達成共識,如果二次項系數為負數時,先做等價轉化,把二次項系數化為正數再解,課本19頁例3、例4作為題組(二),繼續讓學生用上面的圖象法,由學生自己求解,這時我及時提示學生注意這兩題與題組(一)中兩題的不同(例1、例2對應方程都有兩個不等實根,例3對應方程有兩相等實根,例4對應方程無實根)。兩個題組的練習之后,可以尋求解二次不等式的一般規律。3.啟發引導--形成結論。前面兩個題組的四個小題,基本涵蓋了一般一元二次不等式解的各種情況,進一步啟發引導學生將特殊、具體題目的結論做一般化總結,與學生一起就△>0,△<0,△=0c="">0或ax2+bx+c<0a="">0)的解的情況應該水到渠成。至此,學生可以感受到,解二次不等式只須①將二次項系數化為正數,②求解二次方程ax2+bx+c=0的根。③根據①后的二次不等式的符號寫出解集即可,必要時也可以結合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為"三步曲"法)。4.訓練小結--鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時組織學生進行課堂練習,完成課本21頁練習1-4題。本環節請不同層次的'學生在黑板上書寫解題過程,之后師生共同糾正問題,規范解題過程的書寫。5.延伸拓寬--提高能力。課堂教學既要面向全體學生,又應關注學生的個體差異。體現分類推進,分層教學的原則。為此,我又設計了一個提高練習題組,共有三道備選題目,以供程度較好學有余力的學生能夠更好的展示自己的解題能力,取得更進一步的提高。四、課堂意外預案:新課程理念下的教學更多的關注學生自主探究、關注學生的個性發展,鼓勵學生勇于提出問題,培養學生思維的批評性。在課堂上學生往往會提出讓老師感到"意外"的問題,我在平時的教學中重視對"課堂意外預案"的探索和思考,備課時盡量設想課堂中可能會出現的各種情況,做到有備無患,以免在課堂中學生提出讓自己出乎意料的問題,使自己陷入被動尷尬境地。結合以往經驗,在本節課,我提出兩個"意外預案".1.學生在做課本練習1(x+2)(x-3)>0時,可能會問到轉化為不等式組{或{求解對不對。學生提出的問題,想法非常好,應給予肯定和鼓勵,這與下節簡單分式不等式和高次不等式的解法有關,是解不等式的另一種解法--等價轉化法,不在本節課之列。2.根據以往的經驗,在解(x-1)(x+2)>1一類的不等式的時候,由于受方程(x+1)(x+2)=0可轉化為x-1=0或x+2=0求解的影響,有可能會出現將不等式轉化為不等式組{來求解的錯誤做法,教師要關注學生,及時發現問題并給予糾正,指出上面的轉化不是等價轉化。以上是我對本節課的一些粗淺的認識和構想,如有不妥之處,懇請各位專家、各位同仁批評指正。謝謝大家!高中數學說課稿8一、教材分析:1、教材的地位與作用。本節資料是在學生學習了"事件的可能性的基礎上來學習如何預測不確定事件(隨機事件)發生的可能性的大小。"用概率預測隨機發生的可能性大小,在日常生活、自然、科技領域有著廣泛的應用,學習本單元知識,無論是今后繼續深造(高中學習概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學生較難理解。在教材的處理上,采取小單元教學,本節課安排讓學生了解求隨機事件概率的兩種方法,目的是讓學生能夠比較系統地理解概率的意義及求概率的方法,為下頭學習求比較復雜的情景的概率打下基礎。2、重點與難點。重點:對概率意義的理解,經過多次重復實驗,用頻率預測概率的方法,以及用列舉法求概率的方法。難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發生的總數及總的結果數的分析。二、目的分析:知識與技能:掌握用頻率預測概率和用列舉法求概率方法。過程與方法:組織學生自主探究,合作交流,引導學生觀察試驗和統計的結果,進而進行分析、歸納、總結,了解并感受概率的定義的過程,引導學生從數學的視角觀察客觀世界,用數學的思維思考客觀世界,以數學的語言描述客觀世界。情感態度價值觀:學生經歷觀察、分析、歸納、確認等數學活動,感受數學活動充滿了探索性與創造性,感受量變與質變的對立統一規律,同時為概率的精準、新穎、獨特的思維方法所震撼,激發學生學習數學的熱情,增強對數學價值觀的認識。三、教法、學法分析:引導學生自主探究、合作交流、觀察分析、歸納總結,讓學生經歷知識(概率定義計算公式)的產生和發展過程,讓學生在數學活動中學習數學、掌握數學,并能應用數學解決現實生活中的實際問題,教師是學生學習的'組織者、合作者和指導者,精心設計教學情境,有序組織學生活動,讓課堂充滿生機活力,體現"教"為"學"服務這一宗旨。四、教學過程分析:1、引導學生探究精心設計問題一,學生經過對問題一的探究,一方面復習前面學過的"確定事件和不確定事件"的知識,為學好本節資料理清知識障礙,二是讓學生明確為什么要學習概率(如何預測隨機事件可能性發生大小)。引導學生對問題二的探究與觀察實驗數據,使學生了解概率這一重要概念的實際背景,感受并相信隨機事件的發生中存在著統計規律性,感受數學規律的真實的發現過程。2、歸納概括學生從試驗中得到的統計數字及概率呈現穩定在某一數值附近這一規律,讓學生明確概率定義的由來。引導學生重新對問題一和問題二的探究,分析某事件發生的各種可能性在全部可能發生結果中所占比例,得到用列舉法求概率的公式,引導學生進行理性思維,邏輯分析,既培養學生的分析問題能力,又讓學生明確用列舉法求概率這一簡便快捷方法的合理性。3、舉例應用⑴引導學生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學生掌握用列舉法求概率的方法。⑵引導學生對練習中的問題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。4、深化發展⑴設置3個小題目,引導學生歸納、分析、總結,加深對知識與方法的理解,并學會靈活運用。⑵讓學生設計活動資料,對知識進行升華和拓展,引導學生創造性地運用知識思考問題和解決問題,從而培養學生的創新意識和創新能力。高中數學說課稿《二次函數的圖像》今天我說課的題目是《二次函數的圖像》,下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計五方面逐一加以分析和說明。一、教材分析教材的地位和作用本節內容選自北師大版高中數學必修1,第二章第4.1節。二次函數的圖像在教材中起著承上啟下的作用。學情分析本節課的學生是高一學生,他們在初中的時候已經學習過有關內容,為本節課的學習打下了基礎,另一方面,二次函數解析式中的系數由常數轉變為參數,使學生對二次函數的圖像由感性認識上升到理性認識,能培養學生利用數形結合思想解決問題的能力。二、教學目標分析基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分:1、知識與技能理解二次函數中參數a,b,c,h,k對其圖像的影響;2、過程與方法通過體驗對二次函數圖像平移的研究方法,能遷移到其他函數圖像的研究。3、情感態度與價值觀通過本節的學習,進一步體會數形結合思想的作用,感受到數學中數與形的辯證統一。三、教學重難點分析通過以上對教材和學生的分析以及教學目標,我將本節課的'重難點確定如下重點:二次函數圖像的平移變換規律及應用。難點:探索平移對函數解析式的影響及如何利用平移變換規律求函數解析式,并能把平移變換規律遷移到其他函數。四、教法與學法分析1、教法分析基于以上對教材、學情的分析以及新課改的要求,本節課我采用啟發式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數學在生活中的應用,啟發式教學和討論法發散學生思維,培養學生善于思考的能力。2、學法分析新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎。所以本節課我將引導學生通過合作交流、自主探索的方法進行學習。五、教學過程為了更好的實現本課的三維目標,并突破重難點,我將設計以下五個環節來進行我的教學。(1)知識導入溫故而知新,我將先從之前學習的知識引入,給出一些函數,比如y=x2、y=2x2,讓學生作出這些函數的圖像,然后讓學生比較這些函數圖像的相同點和不同點,由此引入我的新課。一方面讓學生總結復習已有知識,為后面的學習做好鋪墊,另一方面,使學生在自己熟悉的問題中首先獲得解題成功的快樂體驗。(2)講授新課例1:畫出函數y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像讓學生畫出他們的圖像并觀察函數圖像的特點,再讓學生與多媒體課件展示的圖像進行對比,得出結論:若二次函數的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。前面的練習和例題,基本涵蓋了二次函數圖像平移變換的各種情況,啟發并引導了學生將實例的結論進行總結,得出y=x2到y=ax2,y=ax2到y=a(x+h)2+k,y=ax2到y=ax2+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a(3)鞏固練習我將組織學生進行練習,完成課本44頁1-3題。通過這種練習的方式,幫助學生鞏固和加深二次函數中參數對圖像的影響。(4)歸納總結我先讓學生進行小結,然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,可以進行適當反思,為下一節課的教學過程做好準備。(5)布置作業略高中數學說課稿《解三角形》一、教材分析本節知識是必修五第一章《解三角形》的第一節資料,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,并且解三角形和三角函數聯系在高考當中也時常考一些解答題。所以,正弦定理和余弦定理的知識十分重要。根據上述教材資料分析,研究到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:認知目標:在創設的問題情境中,引導學生發現正弦定理的資料,推證正弦定理及簡單運用正弦定理與三角形的內角和定理解斜三角形的兩類問題。能力目標:引導學生經過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。情感目標:面向全體學生,創造平等的教學氛圍,經過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,給學生成功的體驗,激發學生學習的興趣。教學重點:正弦定理的資料,正弦定理的證明及基本應用。教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時確定解的個數。二、教法根據教材的資料和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想,采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究資料,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當的`提示和指導。突破難點的方法:抓住學生的能力線聯系方法與技能使學生較易證明正弦定理,另外經過例題和練習來突破難點。三、學法:指導學生掌握“觀察--猜想--證明--應用”這一思維方法,采取個人、小組、團體等多種解難釋疑的嘗試活動,將自我所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,構成了實事求是的科學態度,增強了鍥而不舍的求學精神。四、教學過程第一:創設情景,大概用2分鐘第二:實踐探究,構成概念,大約用25分鐘第三:應用概念,拓展反思,大約用13分鐘(一)創設情境,布疑激趣“興趣是最好的教師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不明白AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫忙別人的熱情和學習的興趣,從而進入今日的學習課題。(二)探尋特例,提出猜想1.激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。3.讓學生總結實驗結果,得出猜想:在三角形中,角與所對的邊滿足關系這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。(三)邏輯推理,證明猜想1.強調將猜想轉化為定理,需要嚴格的理論證明。2.鼓勵學生經過作高轉化為熟悉的直角三角形進行證明。3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明(四)歸納總結,簡單應用1.讓學生用文字敘述正弦定理,引導學生發現定理具有對稱和諧美,提升對數學美的享受。2.正弦定理的資料,討論能夠解決哪幾類有關三角形的問題。3.運用正弦定理求解本節課引入的三角形零件邊長的問題。自我參與實際問題的解決,能激發學生知識后用于實際的價值觀。(五)講解例題,鞏固定理1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.例1簡單,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。(六)課堂練習,提高鞏固1.在△ABC中,已知下列條件,解三角形.(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm2.在△ABC中,已知下列條件,解三角形.(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°學生板演,教師巡視,及時發現問題,并解答。(七)小結反思,提高認識經過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?1.用向量證明了正弦定理,體現了數形結合的數學思想。2.它表述了三角形的邊與對角的正弦值的關系。3.定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。(從實際問題出發,經過猜想、實驗、歸納等思維方法,最終得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅僅收獲著結論,并且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。)(八)任務后延,自主探究如果已知一個三角形的兩邊及其夾角,要求第三邊,怎樣辦?發現正弦定理不適用了,那么自然過渡到下一節資料,余弦定理。布置作業,預習下一節資料。高中數學說課稿“反函數”我擔任高職單招輔導班的數學科教學,可以說每節課都是復習課。今天,我說的是復習課這種課型。內容是《函數》這一章中的“反函數”這一節。一、教材分析:反函數這一節在《函數》這章中是一個難點,篇幅不多(課時少),在高考考綱中的要求也比較簡單。但我個人這樣認為,復習課應盡量把與本節內容相關的新舊知識系統地串在一起,所以在備課時要找一條能把知識點連在一起的線索。這線索就是函數的三要素:(一)教學目標:①使學生掌握反函數的概念并能求出簡單函數的反函數(考綱要求)。②互為反函數的兩個函數具有的性質,以及這些性質在解題中的運用。③通過知識的系統性,培養學生的逆向思維能力和邏輯思維能力。(二)重點、難點:①重點:使學生能求出簡單函數的反函數。②難點:反函數概念的理解。二、教學方法:整節課采用傳統的講解法。首先要認識反函數應先有函數的概念這知識,用例子來說明反函數的求法以及讓學生來完成一題沒有反函數的函數,從而得出一個不滿足函數定義的關系式,通過分析來得到一個函數具有反函數的條件。這里是用“欲擒故縱”的手法,加深對概念的理解,也是突破難點的關鍵。三、學生學習方法:學生認識了反函數的求法(步驟),在老師的引導下得出三個結論,并運用這些結論來解題。希望能達到提高學生性質的解題能力和思維能力的目標。四、教學過程:(一)溫故:函數的'概念、三要素(二)新課:例1:求y=2x+1的反函數解:即(x∈R)注意步驟,新關系式滿足從R到R是一個函數關系式。互這反函數的特點:①運算互逆;②順序倒置例2:y=x2(x∈R)用y的代數表示x得x=這x不是y的函數,不滿足函數定義若對,y=x2的定義域改為x≥0可得x=,即y=(x≥0)當逆對應滿足函數定義,原函數才存在反函數。得到結論①互為反函數的定義域、值域交換即分別在同一坐標上畫出以上互為反函數的圖象得到結論②圖象關于y=x對稱③單調性一致(三)練習1、求的反函數,并求出反函數的值域。2、函數的圖象關于對稱,求a的值。講評:略。(四)小結:(五)布置作業:高中數學說課稿《指數函數》一、教材分析1、《指數函數》在教材中的地位、作用和特點《指數函數》是人教版高中數學(必修)第一冊第二章“函數”的第六節資料,是在學習了《指數》一節資料之后編排的。經過本節課的學習,既能夠對指數和函數的概念等知識進一步鞏固和深化,又能夠為后面進一步學習對數、對數函數尤其是利用互為反函數的圖象間的關系來研究對數函數的性質打下堅實的概念和圖象基礎,又因為《指數函數》是進入高中以后學生遇到的第一個系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學習基礎,所以《指數函數》不僅僅是本章《函數》的重點資料,也是高中學段的主要研究資料之一,有著不可替代的重要作用。此外,《指數函數》的知識與我們的日常生產、生活和科學研究有著緊密的聯系,尤其體此刻細胞分裂、貸款利率的計算和考古中的年代測算等方面,所以學習這部分知識還有著廣泛的現實意義。本節資料的特點之一是概念性強,特點之二是凸顯了數學圖形在研究函數性質時的重要作用。2、教學目標、重點和難點經過初中學段的學習和高中對集合、函數等知識的系統學習,學生對函數和圖象的關系已經構建了必須的認知結構,主要體此刻三個方面:知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡單的函數概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數初步轉化到從集合與對應的觀點來認識函數。技能維度:學生對采用“描點法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質做好準備。素質維度:由觀察到抽象的數學活動過程已有必須的體會,已初步了解了數形結合的思想。鑒于對學生已有的知識基礎和認知能力的分析,根據《教學大綱》的要求,我確定本節課的教學目標、教學重點和難點如下:(1)知識目標:①掌握指數函數的概念;②掌握指數函數的圖象和性質;③能初步利用指數函數的概念解決實際問題;(2)技能目標:①滲透數形結合的基本數學思想方法;②培養學生觀察、聯想、類比、猜測、歸納的能力;(3)情感目標:①體驗從特殊到一般的學習規律,認識事物之間的普遍聯系與相互轉化,培養學生用聯系的觀點看問題;②經過教學互動促進師生情感,激發學生的學習興趣,提高學生抽象、概括、分析、綜合的能力;③領會數學科學的應用價值。(4)教學重點:指數函數的圖象和性質。(5)教學難點:指數函數的圖象性質與底數a的關系。突破難點的關鍵:尋找新知生長點,建立新舊知識的聯系,在理解概念的基礎上充分結合圖象,利用數形結合來掃清障礙。二、教法設計由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖經過這一節課的教學到達不僅僅使學生初步理解并能簡單應用指數函數的知識,更期望能引領學生掌握研究初等函數圖象性質的一般思路和方法,為今后研究其它的函數做好準備,從而到達培養學生學習能力的目的,我根據自我對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:1、創設問題情景、按照指數函數的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。2、強化“指數函數”概念、引導學生結合指數的有關概念來歸納出指數函數的定義,并向學生指出指數函數的形式特點,請學生思考對于底數a是否需要限制,如不限制會有什么問題出現,這樣避免了學生對于底數a范圍分類的不清楚,也為研究指數函數的圖象做了“分類討論”的鋪墊。3、突出圖象的作用、在數學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數學家以往說過“數離形時少直觀,形離數時難入微”,而在研究指數函數的性質時,更是直接由圖象觀察得出性質,所以圖象發揮了主要的作用。4、注意數學與生活和實踐的聯系、數學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關的生活問題,力圖使學生了解到數學的基礎學科作用,培養學生的數學應用意識。三、學法指導本節課是在學習完“指數”的概念和運算后編排的,針對學生實際情景,我主要在以下幾個方面做了嘗試:1、再現原有認知結構。在引入兩個生活實例后,請學生回憶有關指數的概念,幫忙學生再現原有認知結構,為理解指數函數的概念做好準備。2、領會常見數學思想方法。在借助圖象研究指數函數的性質時會遇到分類討論、數形結合等基本數學思想方法,這些方法將會貫穿整個高中的數學學習。3、在互相交流和自主探究中獲得發展。在生活實例的課堂導入、指數函數的性質研究、例題與訓練、課內小節等教學環節中都安排了學生的討論、分組、交流等活動,讓學生變被動的'理解和記憶知識為在合作學習的樂趣中主動地建構新知識的框架和體系,從而完成知識的內化過程。4、注意學習過程的循序漸進。在概念、圖象、性質、應用、拓展的過程中按照先易后難的順序層層遞進,讓學生感到有挑戰、有收獲,跳一跳,夠得著,不一樣難度的題目設計將盡可能照顧到課堂學生的個體差異。四、程序設計在設計本節課的教學過程中,本著遵循學生的認知規律、讓學生去經歷知識的構成與發展過程的原則,我設計了如下的教學程序,啟發學生逐步發現和認識指數函數的圖象和性質。1、創設情景、導入新課教師活動:①用電腦展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞分裂的例子;②將學生按奇數列、偶數列分組。學生活動:①分別寫出計算機價格y與經過月份x的關系式和細胞個數y與分裂次數x的關系式,并互相交流;②回憶指數的概念;③歸納指數函數的概念;④分析出對指數函數底數討論的必要性以及分類的方法。設計意圖:經過生活實例激發學生的學習動機,掃清由概念不清而造成的知識障礙,培養學生思維的主動性,為突破難點做好準備;2、啟發誘導、探求新知教師活動:①給出兩個簡單的指數函數并要求學生畫它們的圖象②在準備好的小黑板上規范地畫出這兩個指數函數的圖象③板書指數函數的性質。學生活動:①畫出兩個簡單的指數函數圖象②交流、討論③歸納出研究函數性質涉及的方面④總結出指數函數的性質。設計意圖:讓學生動手作簡單的指數函數的圖象對深刻理解本節課的資料有著必須的促進作用,在學生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,到達進一步規范學生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情景,學生就會很自然的經過觀察圖象總結出指數函數的性質,同時對于底數的討論也就變得順理成章。高中數學說課稿《向量的加法》一、教材分析:《向量的加法》是《必修》4第二章第二單元中"平面向量的線性運算"的第一節課。本節資料有向量加法的平行四邊形法則、三角形法則及應用,向量加法的運算律及應用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學習向量的減法運算及其幾何意義、向量的數乘運算及其幾何意義奠定了基礎;其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應用。所以本課在"平面向量"及"空間向量"中有很重要的地位。二、學情分析:學生在上節課中學習了向量的定義及表示,相等向量,平行向量等概念,明白向量能夠自由移動,這是學習本節資料的基礎。學生對數的運算了如指掌,并且在物理中學過力的合成、位移的合成等矢量的加法,所以向量的加法可經過類比數的加法、以所學的物理模型為背景引入,這樣做有利于學生更好地理解向量加法的意義,準確把握兩個加法法則的特點。三、教學目的:1、經過對向量加法的探究,使學生掌握向量加法的概念,結合物理學實際理解向量加法的意義。能正確領會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。2、在應用活動中,理解向量加法滿足交換律和結合律以及表述兩個運算律的幾何意義。掌握有特殊位置關系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。3、經過本節的學習,培養學生類比、遷移、分類、歸納等數學方面的能力。四、教學重、難點重點:向量的加法法則。探究向量的加法法則并正確應用是本課的重點。兩個加法法則各有特點,聯系緊密,你中有我,我中有你,實質相同,可是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講資料,平行四邊形法則在本課中所占份量略少于三角形法則。難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學生認識到三角形法則的實質是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構成三角形。五、教學方法本節采用以下教學方法:1、類比:由數的加法運算類比向量的加法運算。2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發現三角形法則適用于任意向量相加;經過圖形,觀察得出向量加法滿足交換律、結合律等,這些都體現探究式教學法的運用。3、講解與練習:對兩個法則特點的分析,例題都采取了引導與講解的方法,學生課堂完成教材中的練習。4、多媒體技術的運用,能直觀地表現向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。六、數學思想的體現:1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規定,這樣對任意向量的加法都做了討論,線索清楚。2、類比思想:使之與數的加法進行類比,使學生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從比較中看出兩者的不一樣,效果較好。3、歸納思想:主要體此刻以下三個環節:①學完平行四邊形法則和三角形法則后,歸納總結,對不共線向量相加,兩個法則都能夠選用。②由共線向量的加法總結出三角形法則適用于任意兩個向量的'相加,而三角形法則僅適用于不共線向量相加。③對向量加法的結合律和探討中,又使學生發現了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環節中的運用,使得學生對兩個加法法則,尤其是三角形法則的理解,步步深入。七、教學過程:1、回顧舊知:本節要進行向量的平移,且對向量加法分共線與不共線兩種情景,所以要復習向量、相等向量、共線向量等概念,這些都是新課學習中必要的知識鋪墊。2、引入新課:(1)平行四邊形法則的引入。學生在物理學中雖然接觸過位移的合成,可是并沒有構成三角形法則的概念;而對平行四邊形法則學生已學過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,可是物理中力的合成是在有相同的作用點的條件下合成的,引入到數學中向量加法的平行四邊形法則,所給出的圖形也是現成的平行四邊形,而學生剛學完相等向量,對相等向量的概念還沒有深刻的認識,易產生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要經過講解例1,使學生認識到能夠經過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。設計意圖:本著從學生最熟悉、離學生最近的知識經驗為接入點,用學生熟知的方法來解決新的問題--向量的加法,這樣新中有舊,學生容易理解,也使學科間的滲透發揮了作用,加深了學生對向量加法的平行四邊形法則的"起點相同"這一特點的認識,例1的講解使學生認識到當表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學生完成對平行四邊形法則理解真正到位。(2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入。所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學生也起到了示例的作用。于是前面的例1還能夠利用三角形法則來做。這時,總結出兩個不共線向量求和時,平行四邊形法則與三角形法則都能夠用。設計意圖:由平行四邊形法則的圖形引入三角形法則,能夠很清楚地使學生從向何意義上認識到兩個法則之間的密切聯系,理解它們的實質,并且銜接自然,能夠使學生比較地得出兩個法則的特點與實質,并對兩個法則的特點有較深刻的印象。(3)共線向量的加法方向相同的兩個向量相加,對學生來說較易完成,"將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度。"引導學生分析作法,結果發現還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。方向相反的兩個向量相加,對學生來說是個難點,首先從作圖上不明白怎樣做。可是學生學過有理數加法中的異號兩數相加:"異號兩數相加,用較大的絕對

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論