




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Signals&Systems
(SecondEdition)
—LearningInstructions
(Exercises
Answers)
DepartmentofComputerEngineering
2005.12
Contents
Chapter1,2
Chapter2-17
Chapter3-35
Chapter4-62
Chapter5,83
Chapter6-109
Chapter7-119
Chapter8,132
Ch叩ter9-140
Chapter1060
1
Chapter1Answers
1.1ConvertingfrompolartoCartesiancoordinates:
1/111-a_Icos^c4一1
—p——cos兀=———pi~-2
2e222e2
.n_產(chǎn)
eT=cos(_)+jsin(_)=je2=CO葉力$,專(zhuān)一)
Ki=95=j&^'=衣(。哼+)與n#9)
&旬@'工一任亨=岳子=j
加尸=1
1.2convertingfromCartesiantopolarcoordinates:
-2=28-3j=gr丐
i+/=
1+jL
匚7=e'
1
1.3.⑶E,=e^'dt=-P=0,because<oo
8
4E
“2/二
X
(b)X2(t)=e八|%2(/)|=1-ThereforefEr=L|2(%=Ldt=g,
產(chǎn)”=?%2,)產(chǎn)=料口,力=匿1=1
->82T/°
(c)X2(f)=cos(t).Therefore,E,=J管,3(3.d?=Lcos(4=8,
(d),“蘇;刷=(加甘
Pg=0,becauseEt<0°
:=1£T-
?xAnfe\xM|-therefore,E,=1
NI21
尸8=吧齊言應(yīng)叫』吧+1z
Z\nn=~N9
⑴乜川二兀.Therefore,邑飛履用廣加式如「女嗚〃)
COS<4
.cos(K
=..Iy(叫l(wèi)im—1—t(-----J—)=-
的2^7、《了J…2N+1,2
(a)Thesignalx[njisshiftedby3totheright.Theshiftedsignalwillbezeroforn<l,Andn>7.
(b)Thesignalx[n]isshiftedby4totheleft.Theshiftedsignalwillbezeroforn<-6.Andn>0.
(c)Thesignalxfn]isflippedsignalwillbezeroforn<-landn>2.
(d)Thesignalx[n]isflippedandtheflippedsignalisshiftedby2totheright.ThenewSignalwillbe
zeroforn<-2andn>4.
(e)Thesignalx[n]isflippedandtheflippedandtheflippedsignalisshiftedby2totheleft.
Thisnewsignalwillbezeroforn<-6andn>0.
1.5.(a)x(l-t)isobtainedbyflippingx(t)andshiftingtheflippedsignalby1totheright.
Therefore,x(1-t)willbezerofort>-2.
(b)From(a),weknowthatx(l-t)iszerofort>-2.Similarly,x(2-t)iszerofort>-l,
Therefore,x(1-t)+x(2-t)willbezerofort>-2.
(c)x(3t)isobtainedbylinearlycompressionx(t)byafactorof3.Therefore,x(3t)willbe
zerofort<l.
2
(d)x(t/3)isobtainedbylinearlycompressionx(t)byafactorof3.Therefore,x(3t)willbe
zerofort<9.
1.6(a)xi(r)isnotperiodicbecauseitiszerofort<0.
(b)x2[n]=]foralln.Therefore,itisperiodicwithafundamentalperiodof1.
(c)巧[〃]isasshownintheFigureS1.6.
11111
xr[n???...
-40?4n
Therefore,itisperiodicIvithafundamentalpe#odof4.
1.7.(a)
£,(%」〃])=+-(?[?]-u[n-4]+u[-n]~u[-n-4])
>3
Therefore,£(xi[?])iszerofor|x,[n]|,
(b)Since川⑺isanoddsignal,f(%[?])iszeroforallvaluesoft.
(C);(同心如㈤+工卜叫=仁卜吟卜^卜-。]
Therefore,(%?)iszerowhen|??|<3andwhen|??|—>oo.
£"]W,1
(d)£(%?))=](%Kf)+%4(/))=1lr[e"5Q-2)_e5,“(」+2)I
Therefore,(X)iszeroonlywhen|/|—>oo.
e,⑺
⑶(況AyQ)})=-2=2e°'cos(0r+兀)
(b)(況,{%2(f)})=^cos(^-)cos(3r+2K)=cos(3r)=^()rcos(3r+0)
71
(c)(況。%3?)})=6-111(3兀+0=e-zsin(3r+y)
((X4)e-2tsin(100/)=e'sin(1OOf+兀)=°cos(100/+1)
1.9.月){is工供歷友complexexponential.
ln_li
X|(0=//°'=々弛+]
(b)isacomplexexponentialmultipliedbyadecayingexponential.Therefore,
X2(z)isnotperiodic.
(c)Xj[n]isaperiodicsignal.XM=^'
X[.isacomplexexponentialwithafundamentalperiodof竺.
2=K
2兀
(d)x[〃]isaperiodicsignal.ThefundamentalperiodisgivenbyN=m(-~--)
=〃7(12)Bychoosingm=3.Weobtainthefundamentalperiodtobe10.
(e)%]川isnotperiodic.笛叫isacomplexexponentialwith卬;"wecannotnnaanyintegerm
suchthatm(2兀)isalsoaninteger.Therefore,isnotperiodic.
---X””]
Wo
1.10.x(r)=2cos(1Ot+l)-sin(4t-l)
PeriodoffirsttermintheRHS=2兀兀.
io=y
PeriodoffirsttermintheRHS=2兀_冗.
~T~2
Therefore,theoverallsignalisperiodicwithaperiodwhichtheleastcommon
multipleoftheperiodsofthefirstandsecondterms.Thisisequalto兀
3
1.11.x[n]=1+4-e鏟
PeriodoffirsttermintheRHS=1.
PeriodofsecondtermintheRHS=(2兀)=7(whenm=2)
PeriodofsecondtermintheRHS27r)=5(whenm=l)
Therefore,theoverallsignalx[nlisperiodicwithaperiodwhichistheleastcommon
Multipleoftheperiodsofthethreetermsinnx[n].Thisisequalto35.
1.12.Thesignalx[n]isasshowninfigureSI.12.x[n]canbeobtainedbyflippingu[n]andthen
Shiftingtheflippedsignalby3totheright.Therefore,x[n]=u[-n+3].Thisimpliesthat
M=-landno=-3.
_0,z<—2
X0-力=Jx(8(T+2)-5(T-2))Jr=L_2<r<2
0,r>2
Therefore£oo=J
1.14Thesignalx(t)anditsderivativeg(t)areshowninFigureSI.14.
g⑺=3/("2幻-3%(一2女-1)
jt=-ock=—<x>
ThisimpliesthatA1=3,t[=0,A2=-3,andt2=1.
1.15(a)Thesignalx2[n],whichistheinputtoS2,isthesameasy1[n].Therefore,
1
y2(n]=x2[n-2]+不x[n-3]
22
1
=yj[n-2]+-y,[n-3]
=2x][n-2]+4x?[n-3]+^-(2x}ln-3]+4x]Ln-4])
=2xl[n-2]+5xj[n-3]+2x,[n-4J
Theinput-outputrelationshipforSis
y[n]=2x[n-2]+5x[n-3]+2x[n-4J
4
(b)Theinput-outputrelationshipdoesnotchangeiftheorderinwhichS(andS2areconnectedseries
reversed..WecaneasilyprovethisassumingthatS,followsS2.Inthiscase,thesignalx][n],whichisthe
inputtoSjisthesameasy2[n].
Thereforey,[n]=2x([n]+4x,[n-1]
=2y2[nj+4y2[n-1]
11
=2(x2[n-2]+-x9[n-3])+4(x2[n-3]+-x[n-4])
222
=2x2[n-2]+5x2[n-3]+2x2[n-4]
Theinput-outputrelationshipforSisonceagain
yln]=2x[n-2]+5x[n-3]+2x[n-4]
1.16(a)Thesystemisnotmemorylessbecauseyfn]depend^onpastvaluesofx[n].
(b)Theoutputofthesystemwillbey[n]=O[Tl]3[72—2]=0
(c)Fromtheresultofpart(b),wemayconcludethatthesystemoutputisalwayszeroforinputsofthe
form8[72—Z:],ker.Therefore,thesystemisnotinvertible.
1.17(a)Thesystemisnotcausalbecausetheoutputy(t)atsometimemaydependonfuturevaluesofx(t).For
instance,y(-K)=x(0).
(b)Considertwoarbitraryinputsx?(t)andx2(t).
X](t)->y!(t)=x/sinCt))
x2(t)fy2(t)=x2(sin(t))
Letx3(t)bealinearcombinationofx{(t)andx2(t).Thatis,x(t)=ax(t)+bx(t)
312
Whereaandbarearbitraryscalars.Ifx3(t)istheinputtothegivensystem,thenthecorrespondingoutput
y(t)isy(t)=x(sin(t))
333
=aX](sin(t))+x2(sin(t))
=ay!(t)+by2(t)
Therefore,thesystemislinear.
1.18.(a)Considertwoarbitraryinputsxjnjandx2[nJ.
x,[n]-yj[n]=網(wǎng)
k=n-nQ1
〃+〃o
X2[n]->y2[n]=網(wǎng)
k=n-nQ2
Letx3[n]bealinearcombinationofxjn]andx2[n].Thatis:
x3[n]=axJn]+bx2[n]
whereaandbarearbitraryscalars.Ifx3[n]istheinputtothegivensystem,thenthecorrespondingoutput
n_+_no
yIn]isy[n]=網(wǎng)
33如3
n+n
=Z(3伙]+如伙])=a£不[燈+bZ”,網(wǎng)
k=n-nf)k=n—nffk=n—n()2
=ay,[n]+by2ln]
Thereforethesystemislinear.
(b)ConsideranarbitraryinputxJnJ.Let
5
"+"o
yI[n]=Z*用
k=n-n01
bethecorrespondingoutput.Considerasecondinputx)[n]obtainedbyshiftingxjnjintime:
x2[n]=x1[n-n1J
Theoutputcorrespondingtothisinputis
n+nn+n
oon-n+n
11J=七機(jī)燈
y[n]=Z*[k]=伙-
2
k=n-n()2k=n-uok=n-n-n
io
n-之m+n先因.
Alsonotethaty1[n-nj]=
k=n-nl-nQ
Therefore,n=nn
y2llyil-i]
Thisimpliesthatthesystemistime-invariant.
(c)If|X[H]|<B,then<
y[n](2n+1)B.
Therefore,C<(2n0+1)B.o
9
1.19(a)(i)Considertwoarbitraryinputsx}(t)andx2(t).X]⑴->yI(t)=tx/t-l)
X2(t)-?y2(t)=fx2(t-l)
Letx3(t)bealinearcombinationofx}(t)andx2(t).Thatisx(t)=ax(t)+bx(t)
3I2
whereaandbarearbitraryscalars.Ifx3(t)istheinputtothegivensystem,thenthecorrespondingoutput
2
1S
y3(0y3(t)=tx3(t-i)
2
=t(ax,(t-l)+bx2(t-1))
=ay1(t)+by2(t)
Therefore,thesystemislinear.
(ii)Consideranarbitraryinputsxx(t).Letyx(t)=tx^t-1)
bethecorrespondingoutput.Considerasecondinputx2(t)obtainedbyshiftingx?(t)intime:
X2(t)=X[
Theoutputcorrespondingtothisinputisy(t)=tx(t-1)=t~x(t-1-1)
2221
Alsonotethaty](t-t0)=(t-t0)~x1(t?1?t0)Woy(t)
2
Thereforethesystemisnottime-invariant.
2
(b)(i)Considertwoarbitraryinputsxjnjandx2[nJ.x[n]—>y[n]=x[n-2]
2
X12[n]->y2[n]=x,[n-2J.
Letx3(t)bealinearcombinationofx}[njandx)[n].Thatisx3[n]=axJnJ+bx?[nJ
whereaandbarearbitraryscalars.Ifx3[n]istheinputtothegivensystem,thenthecorrespondingoutput
2
y[n]isy3[n]=x,[n-2]
3、
=(axJn-2]+bxJn-2])2
2222
=aXj[n-2]+bx2[n-2]+2abxJn-2]x,[n-2]
way1[n]+by2[n]
Thereforethesystemisnotlinear.
(ii)Consideranarbitraryinputxjn].Lety[n]=x]?[n-2]
1
bethecorrespondingoutput.Considerasecondinputx2[n]obtainedbyshiftingx([n]intime:
x2[n]=xI[n-nJ
Theoutputcorrespondingtothisinputis
22
y2[n]=x2[n-2]=x,[n-2-nJ
6
2
Alsonotethaty(n-n]=x[n-2-n]
ifii0
Therefore,y2[n]=y][n-nJ
Thisimpliesthatthesystemistime-invariant.
(c)(i)Considertwoarbitraryinputsxjnjandx2[n].
xjn]-^y,[n]=x1[n+l]-x)[n-l]
x2[n]->y2[n]=x2[n+l]-x2[n-1]
Letx3[n]bealinearcombinationofxjn]andx2[n].Thatis:
x3[n]=axjn]4-bx2[n]
whereaandbarearbitraryscalars.Ifx3[n]istheinputtothegivensystem,thenthe
correspondingoutputy[n]isy[n]=x[n+1]-x[n-1]
3333
=axjn+ll+bx2[n+l]-axjn-l]-bx2[n-1]
=a(x1[n+l]-x1[n-l])+b(x2[n+1]-x2[n-1])
=ayI[n]+by2[n]
Thereforethesystemislinear.
(ii)ConsideranarbitraryinputxJnJ.Lety[n]=x[n+l]-x[n-1]
ii?
bethecorrespondingoutput.Considerasecondinputx2[n]obtainedbyshiftingxjn]intime:x2[n]=
x,[n-n0]
Theoutputcorrespondingtothisinputis
y2[n]=x2[n+l]-x2[n-1]=x,[n+l-n0]-x,[n-l-n0]
Alsonotethaty[n-n]=x[n+l-n]-x[n-1-n]
?ii
Therefore,yjn^yjn-nj00
Thisimpliesthatthesystemistime-invariant.
(d)(i)Considertwoarbitraryinputsx〕(t)andx2(t).
XI(t)->y1(t)=Od{x,(t)}
x2(t)->y2(t)=OJ{x2(t)}
Letx3(t)bealinearcombinationofx】(t)andx2(t).Thatisx(t)=ax(t)+bx(t)
312
whereaandbarearbitraryscalars.Ifx3(t)istheinputtothegivensystem,thenthecorrespondingoutput
y3(t)isy3(t)=OJ{x3(t)}
=Od{ax,(t)+bx2(t)}
=aOd{x,(t)}+bOJ{x2(t)}=ay,(t)+by2(t)
Thereforethesystemislinear.
(ii)Consideranarbitraryinputsx}(t).Let
11
八⑴二Od{x,(t)>2
bethecorrespondingoutput.Considerasecondinputx2(t)obtainedbyshiftingx](t)intime:
x2(t)=Xi(t-t0)
Theoutputcorrespondingtothisinputis
y2(0={x2⑴)=X2(t)-x2(-r)
2
一X(t-t)-x(zr
2
AlsonotethatYjx】(t-t())-X|(TT())-y⑴
22
Thereforethesystemisnottime-invariant.
7
1.20(a)Given
X(/)=e2jt—?y⑴=
XQ)=C-2jt_?y(t)=g-j3t
Sincethesystemliner
%(,)=1/2—+e-2”)ym=]/2(e小
e-j3t)
Therefore
X|(t)=COS(2t)------?y(/)=COS(3t)
(b)weknowthat
.2(t)=cos(2(t-l/2))=(e-je2jt+e,e"")/?
Usingthelinearityproperty,wemayonceagainwrite
兀(t)=:(eJe2j,+e'e-2j')_/)=cos(3t-l)
2_'e-3廣
Therefore,
^(0=008(2(1-1/2))——?y=cos(3t-l)
1.21.ThesignalsaresketchedinfigureA1.21.
FigureS1.21
1.22ThesignalsaresketchedinfigureSI.22
1.23TheevenandoddpartsaresketchedinFigureS1.23
x[3-n]
x[n-41
(b)
x[n]u[n-3]=x[n]
x3n+l
x[3n]1/2
(d)
-1/2
(c)
⑴
8
FigureSI.23
-1/2
FigureSI.24
9
1.24TheevenandoddpartsaresketchedinFigureSI.24
1.25(a)periodicperiod=27t/(4)=n/2
(b)periodicperiod=27t/(4)=2
(c)x(t)=[l+cos(4t-2K/3)]/2.periodicperiod=27t/(4)=兀/2
(d)x(t)=cos(4兀t)/2.periodicperiod=2兀/(4)=1/2
(e)x(t)=[sin(4nt)u(t)-sin(47tt)u(-t)]/2.Notperiod.
(f)Notperiod.
1.26(a)periodic,period=7.
(b)Notperiod.
(c)periodic,period=8.
(d)x[n]=(l/2)[cos(37tn/4+cos(兀n/4)).periodic,period=8.
(e)periodic,period=16.
1.27(a)Linear,stable
(b)Notperiod.
(c)Linear
(d)Linear,causal,stable
(e)Timeinvariant,linear,causal,stable
(f)Linear,stable
(g)Timeinvariant,linear,causal
1.28(a)Linear,stable
(b)Timeinvariant,linear,causal,stable
(c)Memoryless,linear,causal
(d)Linear,stable
(e)Linear,stable
(f)Memoryless,linear,causal,stable
(g)Linear,stable
1.29(a)Considertwoinputstothesystemsuchthat
%四?]=況F[?]}andx2[/?]_2_^y21]=況*?]}
e
Nowconsiderathirdinput[n]=%,[n]+JQ[n].Thecorrespondingsystemoutput
y3r|=況我四}1
Willbe=況.凹+々四}
=況,{[]}+?,{[]}
I2
therefore,wemayconcludethatthesystemisadditive
Letusnowassumethatinputstothesystemsuchthat
與四__。]=沆{[]}
andjn/4Xn.
x2P]_1_^2口=鞏認(rèn)
Nowconsiderathirdinput右[n]=X2[n]+x\[n].Thecorrespondingsystemoutput
Willbe
%四=況,{5/4芻[〃]}
=cos(兀〃/4)況{[]}-sin(nn/4)I{?[]}
+cos(nn/4)況{曰小-sin(兀〃/4)I(,£甲
+cos(冗〃/4)況[x["}-sin(兀〃/4)I{{?
=況平嚴(yán)M[〃]}+況e{e//4X[n]}
2
=%?]+%[〃]
therefore,wemayconcludethatthesystemisadditive
(b)(i)Considertwoinputstothesystemsuchthat
10
and1心⑺
士⑺4xf竺。々0)一%⑺
'一()=4(及dtdt
Nowconsiderathirdinput%[U=.[t]+JQ[tj.Thecorrespondingsystemoutput
Willbe1
ir^wT
2
i[「4)+K叫
i()+1()dbtdtXtJ
=%(')+丸G)
therefore,wemayconcludethatthesystemisnotadditive
Nowconsiderathirdinputx4[t]=ax\[t].Thecorrespondingsystemoutput
Willbe
1
av()[dt
r--12
adx(t)
Xi(r)Ldt
)
Therefore,thesystemishomogeneous.
(ii)Thissystemisnotadditive.Considerthefowlingexample.Let8[nj=28[n+2]+
28[n+l]+28[n]andx」n]=3[n+l]+2,[n+l]+3,
[n].Thecorrespondingoutputsevaluatedatn=0are
y][0]=2andy[0]=3/2
2
Nowconsiderathirdinputxy[n]=x2[n]+x][n].=38[n+2]+48[n+l]+58[n]
Thecorrespondingoutputsevaluatedatn=0is"(0]=15/4.Gnarly,ya10]Wyj〃]+y[0].This
x4[n]x4[n-2]
I,4L-」卻
x
v“iotHei^ise
I。,'J'
.wr]
對(duì)]a匕%[]
n0n4ay4
e.otherwisen
Therefrore,thesystemishomogenous.
1.30(a)Invertible.Inversesystemy(t)=x(t+4)
(b)Noninvertible.Thesignalsx(t)andX](t)=x(t)+27igivethesameoutput
(c)$nland28[n]givethesameoutput
d)Invertible.Inversesystem;y(t)=dx(t)/dt
(e)Invertible.Inversesystemy(n)=x(n+l)forn>0andy[n]=x[n]forn<0
(f)Noninvertible.x(n)and-x(n)givethesameresult
(g)Invertible.Inversesystemy(n)=x(l-n)
(h)Invertible.Inversesystemy(t)=dx(t)/dt
(i)Invertible.Inversesystemy(n)=x(n)-(l/2)x[n-l]
(j)Noninvertible.Ifx(t)isanyconstant,theny(t)=O
(k)$n]and28[n]resultiny[n]=0
(1)Invertible.Inversesystem:y(t)=x(t/2)
(m)NoninvertibleX)[n]=而]+&i-l]andJQ[n]=冊(cè)]givey[n]=8
(n)Invertible.Inversesystem:y[n]=x[2n][n]
1.31(a)NotethatX2(t]=X\[t]-xi[t-2J.Therefore,usinglinearitywegety2(t)=
yi(t)-yi(t-2).thisisshowninFigureSI.31
(b)Notethatx3(t)=xl[t]+xl[t+1]..Therefore,usinglinearitywegetY3(t)=yl(t)+yl(t+2).thisis
11
showninFigureSI.31
1.32Allstitementsaretrue
(1)x(t)periodicwithperiodT;y\(t)periodic,periodT/2
(2)y\(t)periodic,periodT;bx(t)periodic,period2T
(3)x(t)periodic,periodT;”(0periodic,period2T
(4)以⑴periodic,periodT;x(t)periodic,periodT/2;
1.33(1)Truex[n]=x[n+N];qi(n)=y](n+periodicwithN()=n/2
ifNisevenandwithperiodN()=nifNisodd.
(2)False.yin]periodicdoesnoimplyx[n]isperiodici.e.Letx[n]=g[n]+h[n]where
,1,neven,,,J0,neven
£[r/?]=1andh[rn]=S,
10,Hodd1(1/2)\?odd
Thenyi[n]=x[2n]isperiodicbutx[n]isclearlynotperiodic.
(3)True.x[n+N]=x[n];y2[n+No]-yz[n]whereNo=2N
(4)True,yo[n+N][nJ;[n+N。]=y2[nJwhereN°=N/2
1.34.(a)Consider
Z"〃]=x[0]+Z{+-}
n=-<x>
Ifx[n]isodd,x[n]+x[-n]=0.Therefore,the"國(guó)旗n乩nMitionevaluatestozero.
(b)Lety[n]=X|[n]x2[n].Then
y[-n]=Xj[-n]x2[-n]=-xi[n]x2[n]=-y[n].
Thisimpliesthaty[n]isodd.
(c)Consider
=“J撫卬+2
Usingtheresultofpart(b),weknowlliatxe[n]xo[n]isanodcfsignab.Therefore,using
theresultofpart(a)wemayconcludethat
2fxM¥0[〃]=0
〃=-co
Therefore,
n=-oow=—Xn=—oo
(d)Consider
「乙⑴力=£%:⑴山+匚%熊山+2匚%⑺]。(恤
Again,sincexe(t)xo(t)isodd,
rco
Therefore,
A
£w=£x^+f:xw,
1.35.WewanttofindthesmallestNosuchthatm(27i/N)No=2jikorNo=kN/m,
12
wherekisaninteger,thenNmustbeamultipleofm/kandm/kmustbeaninteger.thisimpliesthatm/kisa
divisorofbothmandN.Also,ifwewantthesmallestpossibleNo,thenm/kshouldbeth
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)后勤現(xiàn)場(chǎng)管理制度
- 事故等級(jí)評(píng)定管理制度
- 上班期間手機(jī)管理制度
- 企業(yè)宿舍消毒管理制度
- 傳統(tǒng)倉(cāng)儲(chǔ)服務(wù)管理制度
- 企業(yè)隱患安全管理制度
- 七天連鎖酒店管理制度
- 井下危險(xiǎn)作業(yè)管理制度
- pc公司質(zhì)量管理制度
- 倉(cāng)儲(chǔ)場(chǎng)所窗戶(hù)管理制度
- 2025至2030中國(guó)實(shí)木門(mén)行業(yè)發(fā)展趨勢(shì)分析與未來(lái)投資戰(zhàn)略咨詢(xún)研究報(bào)告
- 音樂(lè)與藝術(shù)在全球中的多樣性與融合
- 2025年安徽省高考生物試卷(含答案解析)
- 真實(shí)情境下的“5E”教學(xué)模式在高中化學(xué)教學(xué)中的應(yīng)用與成效探究
- 基于項(xiàng)目驅(qū)動(dòng)的創(chuàng)新實(shí)踐課程設(shè)計(jì)
- 湖北省武漢市武昌區(qū)三年級(jí)下學(xué)期數(shù)學(xué)期末試卷(含答案)
- 2025中考英語(yǔ)閱讀考點(diǎn)專(zhuān)項(xiàng)突破訓(xùn)練:旅游(學(xué)生版+解析)
- 2025年人教版七年級(jí)下冊(cè)地理全冊(cè)知識(shí)點(diǎn)
- 專(zhuān)利培訓(xùn)試題及答案
- 國(guó)際工程投標(biāo)管理制度
- 第四版(2025)國(guó)際壓力性損傷潰瘍預(yù)防和治療臨床指南解讀
評(píng)論
0/150
提交評(píng)論