青島大學《數學建模與案例分析》2022-2023學年第一學期期末試卷_第1頁
青島大學《數學建模與案例分析》2022-2023學年第一學期期末試卷_第2頁
青島大學《數學建模與案例分析》2022-2023學年第一學期期末試卷_第3頁
青島大學《數學建模與案例分析》2022-2023學年第一學期期末試卷_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共3頁青島大學《數學建模與案例分析》

2022-2023學年第一學期期末試卷題號一二三總分得分一、單選題(本大題共10個小題,每小題4分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、設函數,則等于()A.B.C.D.2、已知向量,向量,求向量在向量上的投影是多少?()A.B.C.D.3、設函數f(x)在區間[0,1]上連續,在(0,1)內可導,且f(0)=0,f(1)=1。對于任意實數c,在(0,1)內是否存在一點ξ,使得f'(ξ)=c?()A.一定存在B.不一定存在C.肯定不存在D.無法確定4、求函數的垂直漸近線方程。()A.B.C.D.5、已知函數,求的麥克勞林展開式。()A.B.C.D.6、函數在點處沿向量方向的方向導數為()A.B.C.D.7、函數的極大值點是()A.B.C.D.不存在8、函數的間斷點是()A.和B.C.D.9、設函數,已知當趨近于無窮大時,函數值趨近于零。那么當趨近于0時,函數值如何變化?()A.趨近于無窮大B.趨近于零C.保持不變D.無法確定10、設函數f(x)=∫(0到x)t2e^(-t2)dt,求f'(x)()A.x2e^(-x2);B.2xe^(-x2);C.x2e^(-x);D.2xe^(-x)二、填空題:(本大題共5個小題,每小題4分,共20分)1、求函數在區間[1,e]上的最小值為()。2、判斷級數的斂散性,并說明理由______。3、判斷函數在處的連續性與可導性______。4、計算定積分的值為____。5、求不定積分的值為______。三、解答題:(本大題共5個小題,共40分)1、(本題8分)設函數,已知曲線在點處的切線方程為,求函數的解析式。2、(本題8分)已知函數,求函數的極值點和極值,并判斷函數在區間上的單調性。3、(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論