江蘇省南京一中2025屆高二上數學期末經典模擬試題含解析_第1頁
江蘇省南京一中2025屆高二上數學期末經典模擬試題含解析_第2頁
江蘇省南京一中2025屆高二上數學期末經典模擬試題含解析_第3頁
江蘇省南京一中2025屆高二上數學期末經典模擬試題含解析_第4頁
江蘇省南京一中2025屆高二上數學期末經典模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南京一中2025屆高二上數學期末經典模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設命題,,則為()A., B.,C., D.,2.19世紀法國著名數學家加斯帕爾·蒙日,創立了畫法幾何學,推動了空間幾何學的獨立發展,提出了著名的蒙日圓定理:橢圓的兩條切線互相垂直,則切線的交點位于一個與橢圓同心的圓上,稱為蒙日圓,且該圓的半徑等于橢圓長半軸長與短半軸長的平方和的算術平方根.若圓與橢圓的蒙日圓有且僅有一個公共點,則b的值為()A. B.C. D.3.某研究所為了研究近幾年中國留學生回國人數的情況,對2014至2018年留學生回國人數進行了統計,數據如下表:年份20142015201620172018年份代碼12345留學生回國人數/萬36.540.943.348.151.9根據上述統計數據求得留學生回國人數(單位:萬)與年份代碼滿足的線性回歸方程為,利用回歸方程預測年留學生回國人數為()A.63.14萬 B.64.72萬C.66.81萬 D.66.94萬4.“,”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.兩個圓和的位置是關系是()A.相離 B.外切C.相交 D.內含6.隨機地向兩個標號分別為1與2的格子涂色,涂上紅色或綠色,在已知其中一個格子顏色為紅色條件下另一個格子顏色也為紅色的概率為()A. B.C. D.7.函數的導函數為,對任意,都有成立,若,則滿足不等式的的取值范圍是()A. B.C. D.8.已知,,若,則()A.9 B.6C.5 D.39.在空間直角坐標系中,已知點A(1,1,2),B(-3,1,-2),則線段AB的中點坐標是()A.(-2,1,2) B.(-1,1,0)C.(-2,0,1) D.(-1,1,2)10.已知雙曲線,過其右焦點作漸近線的垂線,垂足為,延長交另一條漸近線于點A.已知為原點,且,則()A. B.C. D.11.已知四面體,所有棱長均為2,點E,F分別為棱AB,CD的中點,則()A.1 B.2C.-1 D.-212.在二項式的展開式中,前三項的系數成等差數列,把展開式中所有的項重新排成一列,則有理項互不相鄰的概率()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若圓和圓的公共弦所在的直線方程為,則______14.斐波那契數列,又稱“兔子數列”,由數學家斐波那契研究兔子繁殖問題時引入.已知斐波那契數列滿足,,,若記,,則________.(用,表示)15.若直線l經過A(2,1),B(1,)兩點,則l的斜率取值范圍為_________________;其傾斜角的取值范圍為_________________.16.已知橢圓C:,點M與C的焦點不重合,若M關于C的焦點的對稱點分別為A,B,線段MN的中點在C上,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,曲線的參數方程為,(t為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)已知,曲線與曲線相交于A,B兩點,求.18.(12分)已知圓,直線(1)判斷直線l與圓C的位置關系;(2)過點作圓C的切線,求切線的方程19.(12分)如圖,三棱柱的所有棱長都是,平面,為的中點,為的中點(1)證明:直線平面;(2)求平面與平面夾角的余弦值20.(12分)等差數列{an}的前n項和記為Sn,且.(1)求數列{an}的通項公式an(2)記數列的前n項和為Tn,若,求n的最小值.21.(12分)已知.(1)當時,求曲線在點處的切線方程;(2)若在處取得極值,求在上的最小值.22.(10分)已知雙曲線的右焦點與拋物線的焦點相同,且過點.(1)求雙曲線漸近線方程;(2)求拋物線的標準方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】全稱命題的否定時特稱命題,把任意改為存在,把結論否定.【詳解】命題,,則為“,”.故選:B2、B【解析】由題意求出蒙日圓方程,再由兩圓只有一個交點可知兩圓相切,從而列方程可求出b的值【詳解】由題意可得橢圓的蒙日圓的半徑,所以蒙日圓方程為,因為圓與橢圓的蒙日圓有且僅有一個公共點,所以兩圓相切,所以,解得,故選:B3、D【解析】先求出樣本點的中心,代入線性回歸方程即可求出,再將代入線性回歸方程即可得到結果【詳解】由題意知:,,所以樣本點的中心為,所以,解得:,可得線性回歸方程為,年對應的年份代碼為,令,則,所以預測2022年留學生回國人數為66.94萬,故選:D.4、A【解析】由正切函數性質,應用定義法判斷條件間充分、必要關系.【詳解】當,,則,當時,,.∴“,”是“”的充分不必要條件.故選:A5、C【解析】根據圓的方程得出兩圓的圓心和半徑,再得出圓心距離與兩圓的半徑的關系,可得選項.【詳解】圓的圓心為,半徑,的圓心為,半徑,則,所以兩圓的位置是關系是相交,故選:C.【點睛】本題考查兩圓的位置關系,關鍵在于運用判定兩圓的位置關系一般利用幾何法.即比較圓心之間的距離與半徑之和、之差的大小關系,屬于基礎題.6、D【解析】根據古典概型的概率公式即可得出答案.【詳解】在已知其中一個格子顏色為紅色條件下另一個格子顏色有紅色與綠色兩種情況,其中一個格子顏色為紅色條件下另一個格子顏色也為紅色的情況有1種,所以在已知其中一個格子顏色為紅色條件下另一個格子顏色也為紅色的概率為.故選:D.7、C【解析】構造函數,利用導數分析函數的單調性,將所求不等式變形為,結合函數的單調性即可得解.【詳解】對任意,都有成立,即令,則,所以函數上單調遞增不等式即,即因為,所以所以,,解得,所以不等式的解集為故選:C.8、D【解析】根據空間向量垂直的坐標表示即可求解.【詳解】.故選:D.9、B【解析】利用中點坐標公式直接求解【詳解】在空間直角坐標系中,點,1,,,1,,則線段的中點坐標是,,,1,故選:B.10、C【解析】畫出圖象,結合漸近線方程得到,,進而得到,結合漸近線的斜率及角度關系,列出方程,求出,從而求出.【詳解】漸近線為,如圖,過點F作FB垂直于點B,交于點A,則到漸近線距離為,則,又,由勾股定理得:,則,又,,所以,解得:,所以.故選:C11、D【解析】在四面體中,取定一組基底向量,表示出,,再借助空間向量數量積計算作答.【詳解】四面體所有棱長均為2,則向量不共面,兩兩夾角都為,則,因點E,F分別為棱AB,CD的中點,則,,,所以.故選:D12、A【解析】先根據前三項的系數成等差數列求,再根據古典概型概率公式求結果【詳解】因為前三項的系數為,,,當時,為有理項,從而概率為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由兩圓公共弦方程,將兩圓方程相減得到,結合已知列方程組求、,即可得答案.【詳解】由題設,兩圓方程相減可得:,即為公共弦,∴,可得,∴.故答案為:.14、【解析】由已知兩式相加求得,得,得到,從而得到,,利用可得答案.【詳解】因為,由,,得,所以,得,因為,所以,,所以,,所以,.故答案為:.15、①.②.【解析】根據直線l經過A(2,1),B(1,)兩點,利用斜率公式,結合二次函數性質求解;設其傾斜角為,,利用正切函數的性質求解.【詳解】因為直線l經過A(2,1),B(1,)兩點,所以l的斜率為,所以l的斜率取值范圍為,設其傾斜角為,,則,所以其傾斜角的取值范圍為,故答案為:,16、【解析】設M,N的中點坐標為P,,則;由于,化簡可得,根據橢圓的定義==6,所以12.考點:1.橢圓的定義;2.兩點距離公式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)2【解析】(1)消參數即可得曲線的普通方程,利用極坐標方程與直角坐標方程之間的轉化關系式,從而曲線的直角坐標方程;(2)將的參數方程代入的直角坐標方程,得關于的一元二次方程,由韋達定理得,即可得的值.【小問1詳解】由,消去參數,得,即,所以曲線的普通方程為.由,得,即,所以曲線的直角坐標方程為【小問2詳解】將代入,整理得,則,令方程的兩個根為由韋達定理得,所以.18、(1)相交.(2)或.【解析】(1)先判斷出直線恒過定點(2,1),由(2,1)在圓內,即可判斷;(2)分斜率存在與不存在兩種情況,利用幾何法求解.【小問1詳解】直線方程,即,則直線恒過定點(2,1).因為,則點(2,1)位于圓的內部,故直線與圓相交.【小問2詳解】直線斜率不存在時,直線滿足題意;②直線斜率存在的時候,設直線方程為,即.因為直線與圓相切,所以圓心到直線的距離等于半徑,即,解得:,則直線方程為:.綜上可得,直線方程或.19、(1)證明見解析(2)【解析】(1)取的中點,連接交于,連接,,由平面幾何得,再根據線面平行的判定可得證;(2)建立如圖所示的空間直角坐標系,利用向量法即可得結果.【小問1詳解】取的中點,連接交于,連接,在三棱柱中,為的中點,,為的中點,且,且,四邊形為平行四邊形,又平面,平面,平面;【小問2詳解】平面,,平面,,,兩兩垂直,以為原點,,,所在直線分別為軸,軸,軸,建立如圖所示的空間直角坐標系,則,,,,設平面的法向量為,則即取,則,,又是平面的一個法向量,,故平面和平面夾角的余弦值為20、(1)an=2n(2)100【解析】(1)由等差數列的通項公式列出方程組求解即可;(2)由裂項相消求和法得出,再由不等式的性質得出n的最小值.【小問1詳解】設等差數列{an}的公差為d,依題意有解得,所以an=2n.【小問2詳解】由(1)得,則,所以因為,即,解得n>99,所以n的最小值為100.21、(1);(2).【解析】(1)利用導數的幾何意義求切線的斜率,再利用點斜式方程即可求出切線方程;(2)根據極

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論