




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共7頁(yè)浙江省紹興市皋埠鎮(zhèn)中學(xué)2025屆九年級(jí)數(shù)學(xué)第一學(xué)期開學(xué)綜合測(cè)試試題題號(hào)一二三四五總分得分A卷(100分)一、選擇題(本大題共8個(gè)小題,每小題4分,共32分,每小題均有四個(gè)選項(xiàng),其中只有一項(xiàng)符合題目要求)1、(4分)如果,為有理數(shù),那么()A.3 B. C.2 D.﹣22、(4分)下列圖形中,是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是()A. B.C. D.3、(4分)下列下列算式中,正確的是()A. B.C. D.4、(4分)某經(jīng)銷商銷售一批多功能手表,第一個(gè)月以200元/塊的價(jià)格售出80塊,第二個(gè)月起降價(jià),以150元/塊的價(jià)格將這批手表全部售出,銷售總額超過(guò)了2.7萬(wàn)元,則這批手表至少有()A.152塊 B.153塊 C.154塊 D.155塊5、(4分)以下列各組數(shù)為邊長(zhǎng),不能構(gòu)成直角三角形的是()A.5,12,13 B.1,2, C.1,,2 D.4,5,66、(4分)如圖,在△ABC中,∠C=90°,∠A=30°,CD=2,AB的垂直平分線MN交AC于D,連接BD,則AC的長(zhǎng)是()A.4 B.3 C.6 D.57、(4分)如圖,已知小正方形ABCD的面積為1,把它的各邊延長(zhǎng)一倍得到新正方形;把正方形邊長(zhǎng)按原法延長(zhǎng)一倍得到正方形;以此進(jìn)行下去,則正方形的面積為A. B. C. D.8、(4分)下列四組線段中,可以構(gòu)成直角三角形的是()A.4,5,6 B.2,3,4 C.3,4,5 D.1,,二、填空題(本大題共5個(gè)小題,每小題4分,共20分)9、(4分)如圖,某河堤的橫斷面是梯形ABCD,BC∥AD,已知背水坡CD的坡度i=1:2.4,CD長(zhǎng)為13米,則河堤的高BE為米.10、(4分)如圖,ABCD的周長(zhǎng)為36,對(duì)角線AC,BD相交于點(diǎn)O.點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長(zhǎng)為.11、(4分)如圖,在中,,,,則__________.12、(4分)如圖,兩張等寬的紙條交叉疊放在一起,若重疊都分構(gòu)成的四邊形ABCD中,AB=3,BD=1.則AC的長(zhǎng)為_________________.13、(4分)已知菱形ABCD的面積是12cm2,對(duì)角線AC=4cm,則菱形的邊長(zhǎng)是______cm.三、解答題(本大題共5個(gè)小題,共48分)14、(12分)甲、乙兩個(gè)同學(xué)分解因式x2+ax+b時(shí),甲看錯(cuò)了b,分解結(jié)果為(x+2)(x+4);乙看錯(cuò)了a,分解結(jié)果為(x+1)(x+9),求a+b的值.15、(8分)已知三角形ABC中,∠ACB=90°,點(diǎn)D(0,-4),M(4,-4).(1)如圖1,若點(diǎn)C與點(diǎn)O重合,A(-2,2)、B(4,4),求△ABC的面積;(2)如圖2,AC經(jīng)過(guò)坐標(biāo)原點(diǎn)O,點(diǎn)C在第三象限且點(diǎn)C在直線DM與x軸之間,AB分別與x軸,直線DM交于點(diǎn)G,F(xiàn),BC交DM于點(diǎn)E,若∠AOG=55°,求∠CEF的度數(shù);(3)如圖3,AC經(jīng)過(guò)坐標(biāo)原點(diǎn)O,點(diǎn)C在第三象限且點(diǎn)C在直線DM與x軸之間,N為AC上一點(diǎn),AB分別與x軸,直線DM交于點(diǎn)G,F(xiàn),BC交DM于點(diǎn)E,∠NEC+∠CEF=180°,求證∠NEF=2∠AOG.16、(8分)在中,D,E,F(xiàn)分別是三邊,,上的中點(diǎn),連接,,,,已知.(1)觀察猜想:如圖,當(dāng)時(shí),①四邊形的對(duì)角線與的數(shù)量關(guān)系是________;②四邊形的形狀是_______;(2)數(shù)學(xué)思考:如圖,當(dāng)時(shí),(1)中的結(jié)論①,②是否發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明理由;(3)拓展延伸:如圖,將上圖的點(diǎn)A沿向下平移到點(diǎn),使得,已知,分別為,的中點(diǎn),求四邊形與四邊形的面積比.17、(10分)某校全體同學(xué)參加了某項(xiàng)捐款活動(dòng),隨機(jī)抽查了部分同學(xué)捐款的情況,并統(tǒng)計(jì)繪制成了如圖兩幅不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)根據(jù)所提供的信息,解答下列問(wèn)題:(1)本次共抽查學(xué)生人,并將條形圖補(bǔ)充完整:(2)捐款金額的眾數(shù)是元,中位數(shù)是元;(3)若該校共有2000名學(xué)生參加捐款,根據(jù)樣本平均數(shù)估計(jì)該校大約可捐款多少元?18、(10分)如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對(duì)角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為1.(1)當(dāng)m=1,n=20時(shí).①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說(shuō)明理由.(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說(shuō)明理由.B卷(50分)一、填空題(本大題共5個(gè)小題,每小題4分,共20分)19、(4分)如圖,已知矩形ABCD沿著直線BD折疊,使點(diǎn)C落在C/處,BC/交AD于E,AD=8,AB=4,DE的長(zhǎng)=________________.20、(4分)如圖,河壩橫斷面迎水坡的坡比是(坡比是斜坡兩點(diǎn)之間的高度差與水平距離之比),壩高,則坡面的長(zhǎng)度是_______.21、(4分)已經(jīng)RtABC的面積為,斜邊長(zhǎng)為,兩直角邊長(zhǎng)分別為a,b.則代數(shù)式a3b+ab3的值為_____.22、(4分)一次函數(shù)y=mx﹣4中,若y隨x的增大而減小,則m的取值范圍是_____﹣23、(4分)一組數(shù)據(jù)1,2,a,4,5的平均數(shù)是3,則這組數(shù)據(jù)的方差為_____.二、解答題(本大題共3個(gè)小題,共30分)24、(8分)如圖,在Rt△ABC中,∠BAC=90°,AB=6,AC=1.射線BD為∠ABC的平分線,交AC于點(diǎn)D.動(dòng)點(diǎn)P以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)B向終點(diǎn)C運(yùn)動(dòng).作PE⊥BC交射線BD于點(diǎn)E.以PE為邊向右作正方形PEFG.正方形PEFG與△BDC重疊部分圖形的面積為S.(1)求tan∠ABD的值.(2)當(dāng)點(diǎn)F落在AC邊上時(shí),求t的值.(3)當(dāng)正方形PEFG與△BDC重疊部分圖形不是三角形時(shí),求S與t之間的函數(shù)關(guān)系式.25、(10分)某市射擊隊(duì)甲、乙兩名隊(duì)員在相同的條件下各射耙10次,每次射耙的成績(jī)情況如圖所示:(1)請(qǐng)將下表補(bǔ)充完整:(2)請(qǐng)從下列三個(gè)不同的角度對(duì)這次測(cè)試結(jié)果進(jìn)行分析:①?gòu)钠骄鶖?shù)和方差相結(jié)合看,的成績(jī)好些;②從平均數(shù)和中位數(shù)相結(jié)合看,的成績(jī)好些;③若其他隊(duì)選手最好成績(jī)?cè)?環(huán)左右,現(xiàn)要選一人參賽,你認(rèn)為選誰(shuí)參加,并說(shuō)明理由.26、(12分)如圖1,以□ABCD的較短邊CD為一邊作菱形CDEF,使點(diǎn)F落在邊AD上,連接BE,交AF于點(diǎn)G.(1)猜想BG與EG的數(shù)量關(guān)系.并說(shuō)明理由;(2)延長(zhǎng)DE,BA交于點(diǎn)H,其他條件不變,①如圖2,若∠ADC=60°,求的值;②如圖3,若∠ADC=α(0°<α<90°),直接寫出的值.(用含α的三角函數(shù)表示)
參考答案與詳細(xì)解析一、選擇題(本大題共8個(gè)小題,每小題4分,共32分,每小題均有四個(gè)選項(xiàng),其中只有一項(xiàng)符合題目要求)1、A【解析】
直接利用完全平方公式化簡(jiǎn)進(jìn)而得出a,b的值求出答案即可.【詳解】解:∵=a+b,
∵a,b為有理數(shù),
∴a=7,b=4,
∴a-b=7-4=1.
故選:A.此題主要考查了實(shí)數(shù)運(yùn)算,正確應(yīng)用完全平方公式是解題關(guān)鍵.2、C【解析】
根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】解:A.是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;B.是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;C.是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故此選項(xiàng)正確;D.不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤.故選:C.本題考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念:軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分沿對(duì)稱軸折疊后可重合;中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后與原圖重合.3、B【解析】
根據(jù)二次根式的加減運(yùn)算法則和二次根式的性質(zhì)逐項(xiàng)計(jì)算化簡(jiǎn)進(jìn)行判斷.【詳解】解:A項(xiàng),與不是同類二次根式,不能合并,故本選項(xiàng)錯(cuò)誤;B項(xiàng),,正確;C項(xiàng),,故本選項(xiàng)錯(cuò)誤;D項(xiàng),,故本選項(xiàng)錯(cuò)誤;故選B.本題考查了二次根式的性質(zhì)和加減運(yùn)算,正確的進(jìn)行二次根式的化簡(jiǎn)和根據(jù)加減運(yùn)算法則進(jìn)行計(jì)算是解題的關(guān)鍵.4、C【解析】
根據(jù)題意設(shè)出未知數(shù),列出相應(yīng)的不等式,從而可以解答本題.【詳解】解:設(shè)這批手表有x塊,
解得,
這批手表至少有154塊,
故選C.本題考查一元一次不等式的應(yīng)用,解題的關(guān)鍵是明確題意,列出相應(yīng)的不等式.5、D【解析】【分析】根據(jù)勾股定理逆定理進(jìn)行判斷即可.【詳解】因?yàn)椋珹.52+122=132B.12+22=)2C.12+=22D.42+52≠62所以,只有選項(xiàng)D不能構(gòu)成直角三角形.故選:D【點(diǎn)睛】本題考核知識(shí)點(diǎn):勾股定理逆定理.解題關(guān)鍵點(diǎn):能運(yùn)用勾股定理逆定理.6、C【解析】
由MN是AB的垂直平分線,即可得AD=BD,根據(jù)等腰三角形的性質(zhì),即可求得∠DBA的度數(shù),又由直角三角形的性質(zhì),求得∠CBD=∠ABD=30°,然后根據(jù)角平分線的性質(zhì),求得DN的值,繼而求得AD的值,則可求得答案.【詳解】∵M(jìn)N是AB的垂直平分線,∴AD=BD,DN⊥AB,∴∠DBA=∠A=30°,∵∠C=90°,∴∠ABC=90°?∠A=60°,∴∠CBD=∠ABD=30°,∴DN=CD=2,∴AD=2DN=4,∴AC=AD+CD=6.故選:C.此題考查線段垂直平分線的性質(zhì),含30度角的直角三角形,解題關(guān)鍵在于求得∠DBA7、B【解析】
根據(jù)三角形的面積公式,可知每一次延長(zhǎng)一倍后,得到的一個(gè)直角三角形的面積和延長(zhǎng)前的正方形的面積相等,即每一次延長(zhǎng)一倍后,得到的圖形是延長(zhǎng)前的正方形的面積的5倍,從而解答.【詳解】解:如圖,已知小正方形ABCD的面積為1,則把它的各邊延長(zhǎng)一倍后,的面積,新正方形的面積是,從而正方形的面積為,以此進(jìn)行下去,則正方形的面積為.故選:B.此題考查了正方形的性質(zhì)和三角形的面積公式,能夠從圖形中發(fā)現(xiàn)規(guī)律,利用規(guī)律解決問(wèn)題.8、C【解析】
由勾股定理的逆定理,只要驗(yàn)證兩小邊的平方和等于最長(zhǎng)邊的平方即可.【詳解】A.4+5≠6,不能構(gòu)成直角三角形,故不符合題意;B.2+3≠4,不能構(gòu)成直角三角形,故不符合題意;C.3+4=5,能構(gòu)成直角三角形,故符合題意;D.1+()≠(),不能構(gòu)成直角三角形,故不符合題意。故選C.此題考查勾股定理的逆定理,解題關(guān)鍵在于利用勾股定理進(jìn)行計(jì)算二、填空題(本大題共5個(gè)小題,每小題4分,共20分)9、1【解析】在Rt△ABE中,根據(jù)tan∠BAE的值,可得到BE、AE的比例關(guān)系,進(jìn)而由勾股定理求得BE、AE的長(zhǎng),由此得解.解:作CF⊥AD于F點(diǎn),則CF=BE,∵CD的坡度i=1:2.4=CF:FD,∴設(shè)CF=1x,則FD=12x,由題意得CF2+FD2=CD2即:(1x)2+(12x)2=132∴x=1,∴BE=CF=1故答案為1.本題主要考查的是銳角三角函數(shù)的定義和勾股定理的應(yīng)用.10、1.【解析】∵ABCD的周長(zhǎng)為33,∴2(BC+CD)=33,則BC+CD=2.∵四邊形ABCD是平行四邊形,對(duì)角線AC,BD相交于點(diǎn)O,BD=12,∴OD=OB=BD=3.又∵點(diǎn)E是CD的中點(diǎn),∴OE是△BCD的中位線,DE=CD.∴OE=BC.∴△DOE的周長(zhǎng)="OD+OE+DE="OD+(BC+CD)=3+9=1,即△DOE的周長(zhǎng)為1.11、30.【解析】
利用勾股逆定理推出∠C=90°,再利用三角形的面積公式,進(jìn)行計(jì)算即可.【詳解】解:∵,,又∵∴∴∠C=90°∴故答案為:30本題考查了勾股逆定理以及三角形的面積公式,掌握勾股定理是解題的關(guān)鍵.12、2【解析】
過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,DF⊥BC于點(diǎn)F,首先可判斷重疊部分為平行四邊形,且兩條紙條寬度相同;再由平行四邊形的面積可得鄰邊相等,則重疊部分為菱形.然后依據(jù)勾股定理求得OB的長(zhǎng),從而可得到BD的長(zhǎng).【詳解】如圖,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,DF⊥BC于點(diǎn)F,連接AC,DB交于點(diǎn)O,則DE=DF,由題意得:AB∥CD,BC∥AD,∴四邊形ABCD是平行四邊形∵S?ABCD=BC?DF=AB?DE.又∵DE=DF.∴BC=AB,∴四邊形ABCD是菱形;∴OB=OD=2,OA=OC,AC⊥BD.∴∴AC=2AO=2故答案為:2本題考查了菱形的判定、解直角三角形以及四邊形的面積,證得四邊形為菱形是解題的關(guān)鍵.13、【解析】分析:根據(jù)菱形的面積公式求出另一對(duì)角線的長(zhǎng).然后因?yàn)榱庑蔚膶?duì)角線互相垂直平分,利用勾股定理求出菱形的邊長(zhǎng).詳解:由菱形的面積公式,可得另一對(duì)角線長(zhǎng)12×2÷4=6,∵菱形的對(duì)角線互相垂直平分,根據(jù)勾股定理可得菱形的邊長(zhǎng)=cm.故答案為.點(diǎn)睛:此題主要考查菱形的性質(zhì)和菱形的面積公式,關(guān)鍵是掌握菱形的兩條對(duì)角線互相垂直.三、解答題(本大題共5個(gè)小題,共48分)14、1【解析】
根據(jù)題意甲看錯(cuò)了b,分解結(jié)果為(x+2)(x+4),可得a系數(shù)是正確的,乙看錯(cuò)了a,分解結(jié)果為(x+1)(x+9),b系數(shù)是正確的,在利用因式分解是等式變形,可計(jì)算的參數(shù)a、b的值.【詳解】解:∵甲看錯(cuò)了b,所以a正確,∵(x+2)(x+4)=x2+6x+8,∴a=6,∵因?yàn)橐铱村e(cuò)了a,所以b正確∵(x+1)(x+9)=x2+10x+9,∴b=9,∴a+b=6+9=1.本題主要考查因式分解的系數(shù)計(jì)算,關(guān)鍵在于弄清那個(gè)系數(shù)是正確的.15、(1)8;(2)145°;(3)詳見解析.【解析】
(1)作ADx軸于D,BE⊥x軸于E,由點(diǎn)A,B的坐標(biāo)可得出AD=OD=2,BE=EO=4,DE=6,由面積公式可求出答案;
(2)作CH∥x軸,如圖2,由平行線的性質(zhì)可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,則可得出答案;
(3)證得∠NEC=∠HEC,則∠NEF=180°-∠NEH=180°-2∠HEC,可得出結(jié)論.【詳解】解:(1)作ADx軸于D,BEx軸于E,如圖1,∵A(﹣2,2)、B(4,4),∴AD=OD=2,BE=OE=4,DE=6,∴S△ABC=S梯形ABED﹣S△AOD﹣S△AOE=×(2+4)×6﹣×2×2﹣×4×4=8;(2)作CH//x軸,如圖2,∵D(0,﹣4),M(4,﹣4),∴DM//x軸,∴CH//OG//DM,∴∠AOG=∠ACH,∠DEC=∠HCE,∴∠DEC+∠AOG=∠ACB=90°,∴∠DEC=90°﹣55°=35°,∴∠CEF=180°﹣∠DEC=145°;(3)證明:由(2)得∠AOG+∠HEC=∠ACB=90°,而∠HEC+∠CEF=180°,∠NEC+∠CEF=180°,∴∠NEC=∠HEC,∴∠NEF=180°﹣∠NEH=180°﹣2∠HEC,∵∠HEC=90°﹣∠AOG,∴∠NEF=180°﹣2(90°﹣∠AOG)=2∠AOG.本題是三角形綜合題,考查了坐標(biāo)與圖形的性質(zhì),三角形的面積,平行線的性質(zhì),三角形內(nèi)角和定理,熟練掌握平行的性質(zhì)及三角形內(nèi)角和定理是解題的關(guān)鍵.16、(1)①,②平行四邊形;(2)結(jié)論①不變,結(jié)論②由平行四邊形變?yōu)榱庑危碛稍斠娊馕觯唬?)【解析】
(1)根據(jù)三角形中位線定理,即可得出,進(jìn)而得解;由三角形中位線定理得出DE∥AC,,即可判定為平行四邊形;(2)由中位線定理得出,,,然后根據(jù),得出,,即可判定平行四邊形是菱形;(3)首先設(shè),,根據(jù)等腰直角三角形的性質(zhì),得出,進(jìn)而得出,然后由三角形中位線定理得,,經(jīng)分析可知:,且和互相垂直平分,即可得出四邊形為正方形,又由,,,得出四邊形為矩形,即可得出面積比.【詳解】解:(1)①,②平行四邊形;由已知條件和三角形中位線定理,得又∵∴②由三角形中位線定理得,DE∥AC,,∴四邊形是平行四邊形;(2)結(jié)論①不變,結(jié)論②由平行四邊形變?yōu)榱庑危倪呅问橇庑蔚睦碛墒牵骸撸际堑闹形痪€,∴,∴四邊形是平行四邊形∵是的中位線,∴∵∴,∴∴平行四邊形是菱形.(3)設(shè),當(dāng),是等腰直角三角形,∴∴由三角形中位線定理得,,∴,且和互相垂直平分∴四邊形為正方形,∵,EF⊥AD,∴∴又∵,∴四邊形為矩形,∴,∴所求面積比為(1)此題主要考查三角形中位線定理的應(yīng)用,利用其進(jìn)行等式轉(zhuǎn)換和平行四邊形的判定,即可得解;(2)此題主要考查菱形的判定,熟練掌握,即可解題;(3)此題主要考查正方形和矩形的判定,關(guān)鍵是利用正方形和矩形的面積關(guān)系式,即可解題.17、(1)50,見解析;(2)10,12.5;(3)根據(jù)樣本平均數(shù)估計(jì)該校大約可捐款26200元.【解析】
(1)由捐款15元的人數(shù)及其所占百分比可得總?cè)藬?shù),再減去其它捐款數(shù)的人數(shù)求出捐款10元的人數(shù),從而補(bǔ)全圖形;(2)根據(jù)眾數(shù)和中位數(shù)的概念求解可得;(3)先求出這50個(gè)人捐款的平均數(shù),再乘以總?cè)藬?shù)即可得.【詳解】(1)本次抽查的學(xué)生總?cè)藬?shù)為14÷28%=50(人)則捐款10元的人數(shù)為50﹣(9+14+7+4)=16(人)補(bǔ)全圖形如下:(2)捐款的眾數(shù)為10元,中位數(shù)為=12.5(元)故答案為:10、12.5;(3)=13.1(元)則根據(jù)樣本平均數(shù)估計(jì)該校大約可捐款2000×13.1=26200(元).本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù);扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大小.18、(1)①;②四邊形是菱形,理由見解析;(2)四邊形能是正方形,理由見解析,m+n=32.【解析】
(1)①先確定出點(diǎn)A,B坐標(biāo),再利用待定系數(shù)法即可得出結(jié)論;
②先確定出點(diǎn)D坐標(biāo),進(jìn)而確定出點(diǎn)P坐標(biāo),進(jìn)而求出PA,PC,即可得出結(jié)論;
(2)先確定出B(1,),D(1,),進(jìn)而求出點(diǎn)P的坐標(biāo),再求出A,C坐標(biāo),最后用AC=BD,即可得出結(jié)論.【詳解】(1)①如圖1,,反比例函數(shù)為,當(dāng)時(shí),,,當(dāng)時(shí),,,,設(shè)直線的解析式為,,,直線的解析式為;②四邊形是菱形,理由如下:如圖2,由①知,,軸,,點(diǎn)是線段的中點(diǎn),,當(dāng)時(shí),由得,,由得,,,,,,四邊形為平行四邊形,,四邊形是菱形;(2)四邊形能是正方形,理由:當(dāng)四邊形是正方形,記,的交點(diǎn)為,,當(dāng)時(shí),,,,,,,,,,.此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,平行四邊形的判定,菱形的判定和性質(zhì),正方形的性質(zhì),判斷出四邊形ABCD是平行四邊形是解本題的關(guān)鍵.一、填空題(本大題共5個(gè)小題,每小題4分,共20分)19、5【解析】
首先根據(jù)矩形的性質(zhì)可得出AD∥BC,即∠1=∠3,然后根據(jù)折疊知∠1=∠2,C′D=CD、BC′=BC,可得到∠2=∠3,進(jìn)而得出BE=DE,設(shè)DE=x,則EC′=8-x,利用勾股定理求出x的值,即可求出DE的長(zhǎng).【詳解】∵四邊形ABCD是矩形,
∴AD∥BC,即∠1=∠3,
由折疊知,∠1=∠2,C′D=CD=4、BC′=BC=8,
∴∠2=∠3,即DE=BE,
設(shè)DE=x,則EC′=8?x,
在Rt△DEC′中,DC′2+EC′2=DE2
∴42+(8?x)2=x2解得:x=5,
∴DE的長(zhǎng)為5.本題考查折疊問(wèn)題,解題的關(guān)鍵是掌握折疊的性質(zhì)和矩形的性質(zhì).20、【解析】
根據(jù)坡度的概念求出AC,根據(jù)勾股定理求出AB.【詳解】解:∵坡AB的坡比是1:,壩高BC=2m,∴AC=2,由勾股定理得,AB==1(m),故答案為:1.此題主要考查學(xué)生對(duì)坡度坡角的掌握及三角函數(shù)的運(yùn)用能力,熟練運(yùn)用勾股定理是解答本題的關(guān)鍵.21、14【解析】
根據(jù)兩直角邊乘積的一半表示出面積,把已知面積代入求出ab的值,利用勾股定理得到a2+b2=,將代數(shù)式a3b+ab3變形,把a(bǔ)+b與ab的值代入計(jì)算即可求出值.【詳解】解:∵的面積為∴=解得=2根據(jù)勾股定理得:==7則代數(shù)式==2×7=14故答案為:14本題主要考查了三角形的面積公式、勾股定理、因式分解等知識(shí)點(diǎn),把要求的式子因式分解,再通過(guò)面積公式和勾股定理等量代換是解題的關(guān)鍵.22、m<1【解析】
利用一次函數(shù)圖象與系數(shù)的關(guān)系列出關(guān)于m的不等式m<1即可.【詳解】∵一次函數(shù)y=mx﹣4中,y隨x的增大而減小,∴m<1,故答案是:m<1.本題主要考查一次函數(shù)圖象與系數(shù)的關(guān)系.解答本題的關(guān)鍵是注意理解:k>1時(shí),直線必經(jīng)過(guò)一、三象限,y隨x的增大而增大;k<1時(shí),直線必經(jīng)過(guò)二、四象限,y隨x的增大而減小.23、1【解析】由平均數(shù)的公式得:(51+1+x+4+5)÷5=3,
解得x=3;
∴方差=[(1-3)1+(1-3)1+(4-3)1+(3-3)1+(5-3)1]÷5=1;故答案是:1.二、解答題(本大題共3個(gè)小題,共30分)24、(1)tan∠ABD=;(2);(3)①當(dāng)時(shí),;②當(dāng)時(shí),;③當(dāng)時(shí),.【解析】
(1)過(guò)點(diǎn)D作DH⊥BC于點(diǎn)H,可得△ABD≌△HBD,所以CH=BC-AB=4.再由三角形相似即可求出DH=AD=3.根據(jù)三角函數(shù)定義即可解題.(2)由(1)得BP=2PE,所以BP=2t,PE=PG=EF=FG=t,當(dāng)點(diǎn)F落在AC邊上時(shí),F(xiàn)G=CG,即可得到方程求出t.(3)當(dāng)正方形PEFG與△BDC重疊部分圖形不是三角形時(shí),分三種情況分別求出S與t之間的函數(shù)關(guān)系式,①當(dāng)時(shí),F(xiàn)點(diǎn)在三角形內(nèi)部或邊上,②當(dāng)時(shí),如圖:E點(diǎn)在三角形內(nèi)部,F(xiàn)點(diǎn)在外部,此時(shí)重疊部分圖形的面積S=S正方形-S△FMN,③當(dāng)時(shí),重疊部分面積為梯形MPGN面積,【詳解】解:(1)如圖,在Rt△ABC中,∠BAC=90°,AB=6,AC=1根據(jù)勾股定理得BC=10過(guò)點(diǎn)D作DH⊥BC于點(diǎn)H∵△ABD≌△HBD,∴BH=AH=6,DH=AD,∴CH=4,∵△ABC∽△HDC,∴,∴,∴DH=AD=3,∴tan∠ABD==,(2)由(1)可知BP=2PE,依題意得:BP=2t,PE=PG=EF=FG=t,CG=10-3t,當(dāng)點(diǎn)F落在AC邊上時(shí),F(xiàn)G=CG,即,,(3)①當(dāng)時(shí),F(xiàn)點(diǎn)在三角形內(nèi)部或邊上,正方形PEFG在△BDC內(nèi)部,此時(shí)重疊部分圖形的面積為正方形面積:,②當(dāng)時(shí),如圖:E點(diǎn)在三角形內(nèi)部,F(xiàn)點(diǎn)在外部,∵GC=10-3t,NG=CG=(10-3t),F(xiàn)N=t-(10-3t),F(xiàn)M=,此時(shí)重疊部分圖形的面積S=S正方形-S△FMN,③當(dāng)時(shí),重疊部分面積為梯形MPGN面積,如圖:∵GC=10-3t,NG=CG=(10-3t),PC=10-2t,PM=,∴,綜上所述:當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.本題考查三角形綜合題,涉及了矩形的性質(zhì)、勾股定理、相似三角形的性質(zhì)和判定、解直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類討論的思想思考問(wèn)題,學(xué)會(huì)構(gòu)建方程解決問(wèn)題,屬于中考?jí)狠S題.25、(1)見解析;(2)(2)①甲;②乙;③選乙;理由見解析.【解析】試題分析:(1)分別根據(jù)方差公式、中位數(shù)的定義以及算術(shù)平均數(shù)的計(jì)算方法進(jìn)行計(jì)算即可得解;(2)①在平均數(shù)相
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- java開發(fā)工程師應(yīng)屆面試題及答案
- 數(shù)理項(xiàng)目考試題及答案
- java基礎(chǔ)以及框架面試題及答案
- 小明的故事記敘文作文15篇范文
- 校園里的那一抹夕陽(yáng):寫景作文9篇
- 2024-2025學(xué)年江蘇省徐州市高二下學(xué)期期中考試英語(yǔ)試題(解析版)
- 醫(yī)療行業(yè)工作表現(xiàn)證明書(6篇)
- 2025年九江市武寧城投集團(tuán)招聘考試筆試試題(含答案)
- 2025年吉林省達(dá)興創(chuàng)新創(chuàng)業(yè)技工學(xué)校招聘考試筆試試題(含答案)
- 廣東省揭陽(yáng)市普寧市2023-2024學(xué)年七年級(jí)下學(xué)期語(yǔ)文期末試卷(含答案)
- 軟件使用授權(quán)書
- 經(jīng)濟(jì)學(xué)基礎(chǔ)題庫(kù)-選擇判斷題庫(kù)(401道)
- 敦煌壁畫中的蓮花圖像
- 醫(yī)院護(hù)理培訓(xùn)課件:《跌倒墜床PDCA分析》
- 國(guó)開《民法學(xué)(1)》形考任務(wù)1-4答案
- 熱力發(fā)電廠課程設(shè)計(jì)說(shuō)明書
- 階梯軸的機(jī)械加工工藝過(guò)程卡片
- 特發(fā)性矮小病例分享
- 氣體吸收操作-吸收塔結(jié)構(gòu)認(rèn)知(化工單元操作課件)
- 2023年副主任醫(yī)師(副高)-中西醫(yī)結(jié)合內(nèi)科學(xué)(副高)考試參考題庫(kù)附帶答案
- 北京市海淀區(qū)八年級(jí)下學(xué)期期末考試語(yǔ)文試題
評(píng)論
0/150
提交評(píng)論