上海市徐匯區市級名校2025屆數學高二上期末統考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,已知四棱錐,底面ABCD是邊長為4的菱形,且,E為AD的中點,,則異面直線PC與BE所成角的余弦值為()A. B.C. D.2.“”是“函數在上有極值”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.若方程表示圓,則實數m的取值范圍為()A B.C. D.4.《萊茵德紙草書》(RhindPapyrus)是世界上最古老的數學著作之一.書中有這樣一道題目:把93個面包分給5個人,使每個人所得面包個數成等比數列,且使較小的兩份之和等于中間一份的四分之三,則最大的一份是()個A.12 B.24C.36 D.485.已知直線在x軸和y軸上的截距相等,則a的值是()A或1 B.或C. D.16.在區間內隨機取一個數則該數滿足的概率為()A. B.C. D.7.在直三棱柱中,,M,N分別是,的中點,,則AN與BM所成角的余弦值為()A. B.C. D.8.已知,,,,則下列不等關系正確的是()A. B.C. D.9.在棱長為2的正方體中,是棱上一動點,點是面的中心,則的值為()A.4 B.C.2 D.不確定10.展開式的第項為()A. B.C. D.11.若命題“,”是假命題,則實數的取值范圍為()A. B.C. D.12.在等差數列中,,且構成等比數列,則公差等于()A.0 B.3C. D.0或3二、填空題:本題共4小題,每小題5分,共20分。13.若不等式的解集為,則________14.設、分別是橢圓的左、右焦點.若是該橢圓上的一個動點,則的最大值為_____15.寫出一個離心率且焦點在軸上的雙曲線的標準方程________,并寫出該雙曲線的漸近線方程________16.已知四面體中,,分別在,上,且,,若,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,是平行四邊形,已知,,平面平面.(1)證明:;(2)若,求平面與平面所成二面角的平面角的余弦值18.(12分)已知函數在處有極值.(1)求常數a,b的值;(2)求函數在上的最值.19.(12分)已知函數.(1)求的導數;(2)求函數的圖象在點處的切線方程.20.(12分)如圖,在三棱柱中,點在底面內的射影恰好是點,是的中點,且滿足(1)求證:平面;(2)已知,直線與底面所成角的大小為,求二面角的大小21.(12分)如圖1,在邊長為2的菱形ABCD中,∠BAD=60°,將△BCD沿對角線BD折起到△BDC′的位置,如圖2所示,并使得平面BDC′⊥平面ABD,E是BD的中點,FA⊥平面ABD,且FA=.圖1圖2(1)求平面FBC′與平面FBA夾角的余弦值;(2)在線段AD上是否存在一點M,使得⊥平面?若存在,求的值;若不存在,說明理由.22.(10分)設數列的前項和,且成等差數列.(1)求數列的通項公式;(2)記數列前項和,求使成立的的最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據異面直線的定義找出角即為所求,再利用余弦定理解三角形即可得出.【詳解】分別取BC,PB的中點F,G,連接DF,FG,DG,如圖,因為E為AD的中點,四邊形ABCD是菱形,所以,所以(其補角)是異面直線PC與BE所成的角因為底面ABCD是邊長為4菱形,且,,由余弦定理可知,所以,所以,所以異面直線PC與BE所成角的余弦值為,故選:B2、B【解析】對求導,取得函數在上有極值的等價條件,再根據充分條件和必要條件的定義進行判斷即可【詳解】解:,則,令,可得,當時,,當時,,即在上單調遞減,在上單調遞增,所以,函數在處取得極小值,若函數在上有極值,則,,因為,但是由推不出,因此是函數在上有極值的必要不充分條件故選:B3、D【解析】根據,解不等式即可求解.【詳解】由方程表示圓,則,解得.所以實數m的取值范圍為.故選:D4、D【解析】設等比數列的首項為,公比,根據題意,由求解.【詳解】設等比數列的首項為,公比,由題意得:,即,解得,所以,故選:D5、A【解析】分截距都為零和都不為零討論即可.【詳解】當截距都為零時,直線過原點,;當截距不為零時,,.綜上:或.故選:A.6、C【解析】求解不等式,利用幾何概型的概率計算公式即可容易求得.【詳解】求解不等式可得:,由幾何概型的概率計算公式可得:在區間內隨機取一個數則該數滿足的概率為.故選:.7、D【解析】構建空間直角坐標系,根據已知條件求AN與BM對應的方向向量,應用空間向量夾角的坐標表示求AN與BM所成角的余弦值.【詳解】建立如下圖所示的空間直角坐標系,∴,,,,∴,,∴,所以AN與BM所成角的余弦值為.故選:D8、C【解析】不等式性質相關的題型,可以通過舉反例的方式判斷正誤.【詳解】若、均為負數,因為,則,故A錯.若、,則,故B錯.由不等式的性質可知,因為,所以,故C對.若,因為,所以,故D錯.故選:C.9、A【解析】畫出圖形,建立空間直角坐標系,用向量法求解即可【詳解】如圖,以為原點建立如圖所示的空間直角坐標系,因為正方體棱長為2,點是面的中心,是棱上一動點,所以,,,故選:A10、B【解析】由展開式的通項公式求解即可【詳解】因為,所以展開式的第項為,故選:B11、A【解析】根據命題與它的否定命題一真一假,寫出該命題的否定命題,再求實數的取值范圍【詳解】解:命題“,”是假命題,則它的否定命題“,”是真命題,時,不等式為,顯然成立;時,應滿足,解得,所以實數的取值范圍是故選:A12、D【解析】根據,且構成等比數列,利用“”求解.【詳解】設等差數列的公差為d,因為,且構成等比數列,所以,解得,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、11【解析】根據題意得到2與3是方程的兩個根,再根據兩根之和與兩根之積求出,進而求出答案.【詳解】由題意得:2與3是方程的兩個根,則,,所以.故答案為:1114、4【解析】設,寫出、的坐標,利用向量數量積的坐標表示有,根據橢圓的有界性即可求的最大值.【詳解】由題意知:,,若,∴,,∴,而,則,而,∴當時,.故答案為:【點睛】關鍵點點睛:利用向量數量積的坐標表示及橢圓的有界性求最值.15、①.(答案不唯一)②.(答案不唯一)【解析】令雙曲線為,根據離心率可得,結合雙曲線參數關系寫出一個符合要求的雙曲線方程,進而寫出對應的漸近線方程.【詳解】由題設,可令雙曲線為且,∴,則,故為其中一個標準方程,此時漸近線方程為.故答案為:,(答案不唯一).16、【解析】連接,根據題意,結合空間向量加減法運算求解即可.【詳解】解:連接∵四面體中,,分別在,上,且,∴∴∴.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】(1)推導出,取BC的中點F,連結EF,可推出,從而平面,進而,由此得到平面,從而;(2)以為坐標原點,,所在直線分別為,軸,以過點且與平行的直線為軸,建立空間直角坐標系,利用向量法能求出平面與平面所成二面角的余弦值【詳解】(1)∵是平行四邊形,且∴,故,即取BC的中點F,連結EF.∵∴又∵平面平面∴平面∵平面∴∵平面∴平面,∵平面∴(2)∵,由(Ⅰ)得以為坐標原點,所在直線分別為軸,建立空間直角坐標系(如圖),則∴設平面的法向量為,則,即得平面一個法向量為由(1)知平面,所以可設平面的法向量為設平面與平面所成二面角的平面角為,則即平面與平面所成二面角的平面角的余弦值為.【點睛】用空間向量求解立體幾何問題的注意點(1)建立坐標系時要確保條件具備,即要證明得到兩兩垂直的三條直線,建系后要準確求得所需點的坐標(2)用平面的法向量求二面角的大小時,要注意向量的夾角與二面角大小間的關系,這點需要通過觀察圖形來判斷二面角是銳角還是鈍角,然后作出正確的結論18、(1);(2)最大值為-1,最值為-5.【解析】(1)根據給定條件結合函數的導數建立方程,求解方程并驗證作答.(2)利用導數探討函數在上的單調性即可計算作答.【小問1詳解】依題意:,則,解得:,當時,,當時,,當時,,則函數在處有極值,所以.【小問2詳解】由(1)知:,,,當時,,當時,,因此,在上單調遞增,在上單調遞減,于是得,而,,則,所以函數在上的最大值為-1,最值為-5.19、(1);(2).【解析】(1)利用基本初等函數的導數公式及求導法則直接計算作答.(2)求出,再利用導數的幾何意義求出切線方程作答.【小問1詳解】函數定義域為,所以函數.【小問2詳解】由(1)知,,而,于是得,即,所以函數的圖象在點處的切線方程是.20、(1)證明見解析;(2).【解析】(1)分別證明出和,利用線面垂直的判定定理即可證明;(2)以C為原點,為x、y、z軸正方向建立空間直角坐標系,用向量法求二面角的平面角.【小問1詳解】因為點在底面內的射影恰好是點,所以面.因為面,所以.因為是的中點,且滿足.所以,所以.因為,所以,即,所以.因為,面,面,所以平面.【小問2詳解】∵面,∴直線與底面所成角為,即.因為,所以由(1)知,,因,所以,.如圖示,以C為原點,為x、y、z軸正方向建立空間直角坐標系.則,,,,所以,設,由得,,即.則.設平面BDC1的一個法向量為,則,不妨令,則.因為面,所以面的一個法向量為記二面角的平面角為,由圖知,為銳角.所以,即.所以二面角的大小為.21、(1)(2)不存在,理由見解析【解析】(1)利用垂直關系,以點為原點,建立空間直角坐標系,分別求平面和平面的法向量和,利用公式,即可求解;(2)若滿足條件,,利用向量的坐標表示,判斷是否存在點滿足.【小問1詳解】∵,E為BD的中點∴CE⊥BD,又∵平面⊥平面ABD,平面平面,⊥平面,∴⊥平面ABD,如圖以E原點,分別以EB、AE、EC′所在直線為x軸、y軸、z軸建立空間直角坐標系,則B(1,0,0),A(0,-,0),D(-1,0,0),F(0,-,2),(0,0,),∴=(-1,-,2),=(-1,0,),=(1,,0),設平面的法向量為=(x,y,z),則,取z=1,得平面的一個法向量=(,1,1),設平面FBA的法向量為=(a,b,c),則取b=1,得平面FBA的一個法向量為=(-,1,0),∴設平面ABD與平面的夾角為θ,則∴平面ABD與平面夾角的余弦值為.【小問2詳解】假設在線段AD上存在M(x,y,z),使得平面,設(0≤λ≤1),則(x,y+,z)=(-1,,0),即(x,y+,z)=(-λ,,0),∴,,z=0,∴,是平面的一個法向量由∥,得,此方程無解.
評論
0/150
提交評論