黑龍江安達(dá)市育才高中2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
黑龍江安達(dá)市育才高中2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
黑龍江安達(dá)市育才高中2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
黑龍江安達(dá)市育才高中2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
黑龍江安達(dá)市育才高中2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

黑龍江安達(dá)市育才高中2025屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列滿足,,則()A.21 B.42C.63 D.842.已知向量,,若,則()A.1 B.C. D.23.平面的法向量,平面的法向量,已知,則等于()A B.C. D.4.已知雙曲線右頂點為,以為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點,若,則的離心率為()A.2 B.C. D.5.在中國,周朝時期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并證明此定理的為公元前世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派,他們用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和.若一個直角三角形的斜邊長等于則這個直角三角形周長的最大值為()A. B.C. D.6.如圖,在正方體中,點,分別是面對角線與的中點,若,,,則()A. B.C. D.7.?dāng)?shù)列滿足且,則的值是()A.1 B.4C.-3 D.68.拋物線有如下光學(xué)性質(zhì):平行于拋物線對稱軸的入射光線經(jīng)拋物線反射后必過拋物線的焦點.已知拋物線的焦點為F,一條平行于y軸的光線從點射出,經(jīng)過拋物線上的點A反射后,再經(jīng)拋物線上的另一點B射出,則經(jīng)點B反射后的反射光線必過點()A. B.C. D.9.在中,已知點在線段上,點是的中點,,,,則的最小值為()A. B.4C. D.10.中國歷法推測遵循以測為輔,以算為主的原則.例如《周髀算經(jīng)》里對二十四節(jié)氣的晷影長的記錄中,冬至和夏至的晷影長是實測得到的,其它節(jié)氣的晷影長則是按照等差數(shù)列的規(guī)律計算得出的.二十四節(jié)氣中,從冬至到夏至的十三個節(jié)氣依次為:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種、夏至.已知《周髀算經(jīng)》中記錄某年的冬至的晷影長為13尺,夏至的晷影長是1.48尺,按照上述規(guī)律,那么《周髀算經(jīng)》中所記錄的立夏的晷影長應(yīng)為()A.尺 B.尺C.尺 D.尺11.設(shè),,,則下列不等式中一定成立的是()A. B.C. D.12.若直線與曲線有兩個公共點,則實數(shù)的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的長軸長為______14.已知函數(shù),___________.15.經(jīng)過、兩點的直線斜率為______.16.已知是雙曲線上的一點,是上的兩個焦點,若,則的取值范圍是_______________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列滿足(1)求的通項公式;(2)設(shè),求數(shù)列的前n項和18.(12分)在中,,,為邊上一點,且(1)求;(2)若,求19.(12分)如圖,在四棱柱中,底面,,,且,(1)求證:平面平面;(2)求二面角所成角的余弦值20.(12分)已知拋物線C:的焦點為F,為拋物線C上一點,且(1)求拋物線C的方程:(2)若以點為圓心,為半徑的圓與C的準(zhǔn)線交于A,B兩點,過A,B分別作準(zhǔn)線的垂線交拋物線C于D,E兩點,若,證明直線DE過定點21.(12分)已知橢圓C:()過點,且離心率為(1)求橢圓C的方程;(2)過點()的直線l(不與x軸重合)與橢圓C交于A,B兩點,點C與點B關(guān)于x軸對稱,直線AC與x軸交于點Q,試問是否為定值?若是,請求出該定值,若不是,請說明理由22.(10分)設(shè)函數(shù),且存在兩個極值點、,其中.(1)求實數(shù)的取值范圍;(2)若恒成立,求最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設(shè)等比數(shù)列公比為q,根據(jù)給定條件求出即可計算作答.【詳解】等比數(shù)列公比為q,由得:,即,而,解得,所以.故選:D2、B【解析】由向量平行,先求出的值,再由模長公式求解模長.【詳解】由,則,即則,所以則故選:B3、A【解析】根據(jù)兩個平面平行得出其法向量平行,根據(jù)向量共線定理進(jìn)行計算即可.【詳解】由題意得,因為,所以(),即,解得,所以.故選:A4、B【解析】,得出到漸近線的距離為,由此可得的關(guān)系,從而求得離心率【詳解】因為,而,所以是等邊三角形,到直線的距離為,又,漸近線方程取,即,所以,化簡得故選:B5、C【解析】設(shè)直角三角形的兩條直角邊邊長分別為,則,根據(jù)基本不等式求出的最大值后,可得三角形周長的最大值.【詳解】設(shè)直角三角形的兩條直角邊邊長分別為,則.因為,所以,所以,當(dāng)且僅當(dāng)時,等號成立.故這個直角三角形周長的最大值為故選:C6、D【解析】由空間向量運算法則得,利用向量的線性運算求出結(jié)果.【詳解】因為點,分別是面對角線與的中點,,,,所以故選:D.7、A【解析】根據(jù)題意,由于,可知數(shù)列是公差為-3的等差數(shù)列,則可知d=-3,由于=,故選A8、D【解析】求出、坐標(biāo)可得直線的方程,與拋物線方程聯(lián)立求出,根據(jù)選項可得答案,【詳解】把代入得,所以,所以直線的方程為即,與拋物線方程聯(lián)立解得,所以,因為反射光線平行于y軸,根據(jù)選項可得D正確,故選:D9、C【解析】利用三點共線可得,由,利用基本不等式即可求解.【詳解】由點是的中點,則,又因為點在線段上,則,所以,當(dāng)且僅當(dāng),時取等號,故選:C【點睛】本題考查了基本不等式求最值、平面向量共線的推論,考查了基本運算求解能力,屬于基礎(chǔ)題.10、B【解析】根據(jù)等差數(shù)列定義求得公差,再求解立夏的晷影長在數(shù)列中所對應(yīng)的項即可【詳解】設(shè)從冬至到夏至的十三個節(jié)氣依次為等差數(shù)列的前13項,則所以公差為,則立夏的晷影長應(yīng)為(尺)故選:B11、B【解析】利用特殊值法可判斷ACD的正誤,根據(jù)不等式的性質(zhì),可判斷B的正誤.【詳解】對于A中,令,,,,滿足,,但,故A錯誤;對于B中,因為,所以由不等式的可加性,可得,所以,故B正確;對于C中,令,,,,滿足,,但,故C錯誤;對于D中,令,,,,滿足,,但,故D錯誤故選:B12、D【解析】由題可知,曲線表示一個半圓,結(jié)合半圓的圖像和一次函數(shù)圖像即可求出的取值范圍.【詳解】由得,畫出圖像如圖:當(dāng)直線與半圓O相切時,直線與半圓O有一個公共點,此時,,所以,由圖可知,此時,所以,當(dāng)直線如圖過點A、B時,直線與半圓O剛好有兩個公共點,此時,由圖可知,當(dāng)直線介于與之間時,直線與曲線有兩個公共點,所以.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】把橢圓方程化成標(biāo)準(zhǔn)形式直接計算作答.【詳解】橢圓方程化為:,令橢圓長半軸長為a,則,解得,所以橢圓的長軸長為4.故答案為:414、【解析】直接利用分段函數(shù)的解析式即可求解.【詳解】因為,所以,所以.故答案為:-115、【解析】利用斜率公式可求得結(jié)果.【詳解】由斜率公式可知,直線的斜率為.故答案為:.16、【解析】由題意,,.故答案為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為d,由題意得列出方程組,可求得的值,代入公式,即可得答案.(2)由(1)可得,利用等比數(shù)列的定義,可證數(shù)列為等比數(shù)列,結(jié)合前n項和公式,即可得答案.【小問1詳解】設(shè)等差數(shù)列的公差為d,由題意得,解得,所以通項公式【小問2詳解】由(1)可得,,又,所以數(shù)列是以4為首項,4為公比的等比數(shù)列,所以18、(1);(2)【解析】(1)在△中,由余弦定理,即可求.(2)在中,由正弦定理,即可求.【詳解】(1)在△中,,,,由余弦定理得:,∴(2)在中,,,,由正弦定理得:,即,∴19、(1)證明見解析;(2).【解析】(1)證出,,由線面垂直的判定定理可得平面,再根據(jù)面面垂直的判定定理即可證明.(2)分別以,,為,,軸,建立空間直角坐標(biāo)系,求出平面的一個法向量以及平面的一個法向量,由即可求解.【詳解】(1)證明:因為,,所以,,因為,所以,所以,即因為底面,所以底面,所以因為,所以平面,又平面,所以平面平面(2)解:如圖,分別以,,為,,軸,建立空間直角坐標(biāo)系,則,,,,所以,,,設(shè)平面的法向量為,則令,得設(shè)平面的法向量為,則令,得,所以,由圖知二面角為銳角,所以二面角所成角的余弦值為【點睛】思路點睛:解決二面角相關(guān)問題通常用向量法,具體步驟為:(1)建坐標(biāo)系,建立坐標(biāo)系的原則是盡可能的使得已知點在坐標(biāo)軸上或在坐標(biāo)平面內(nèi);(2)根據(jù)題意寫出點的坐標(biāo)以及向量的坐標(biāo),注意坐標(biāo)不能出錯.(3)利用數(shù)量積驗證垂直或求平面的法向量.(4)利用法向量求距離、線面角或二面角.20、(1);(2)證明見解析.【解析】(1)解方程和即得解;(2)設(shè),,將與圓P的方程聯(lián)立得到韋達(dá)定理,再寫出直線的方程即得解.【小問1詳解】解:因為拋物線C上一點,且,所以到拋物線C的準(zhǔn)線的距離為2則,,則,所以,故拋物線C的方程為【小問2詳解】證明:由(1)知,則圓P的方程為設(shè),,將與圓P的方程聯(lián)立,可得,則,當(dāng)時,,不妨令,則,此時;當(dāng)時,直線DE的斜率為,則直線DE的方程為,即,即,令且,得,直線過點;綜上,直線DE過定點21、(1)(2)為定值【解析】(1)由題意可得解方程組求出,從而可得橢圓方程,(2)設(shè)直線AB:,,代入橢圓方程,消去,利用根與系數(shù)關(guān)系,再表示出直線AC的方程,從而可求出點Q的坐標(biāo),從而可表示出,然后化簡可得結(jié)論【小問1詳解】由題意得解得故橢圓C的方程為;【小問2詳解】設(shè)直線AB:,,聯(lián)立消去y得,設(shè),,得,,因為點C與點B關(guān)于x軸對稱,所以,所以直線AC的斜率為,直線AC的方程,令,解得可得,所以,因為,所以,所以為定值【點睛】關(guān)鍵點點睛:此題考查橢圓方程的求法,考查直線與橢圓的位置關(guān)系,解題的關(guān)鍵是將直線AB的方程代入橢圓方程中化簡,利用根與系數(shù)關(guān)系,結(jié)合已知條件表示出直線AC的方程,從而可求出點Q的坐標(biāo),考查計算能力,屬于中檔題22、(1)(2)【解析】(1)存在兩個極值點,等價于其導(dǎo)函數(shù)有兩個相異零點;(2)適當(dāng)構(gòu)造函數(shù),并注意與關(guān)系,轉(zhuǎn)化為函數(shù)求最大值問題,即可求得的范圍.【小問1詳解】(),,函數(shù)存在兩個極值點、,且

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論