2025屆河北省隆華存瑞中學高二上數學期末質量檢測試題含解析_第1頁
2025屆河北省隆華存瑞中學高二上數學期末質量檢測試題含解析_第2頁
2025屆河北省隆華存瑞中學高二上數學期末質量檢測試題含解析_第3頁
2025屆河北省隆華存瑞中學高二上數學期末質量檢測試題含解析_第4頁
2025屆河北省隆華存瑞中學高二上數學期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆河北省隆華存瑞中學高二上數學期末質量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在棱長為1的正方體中,M是的中點,則點到平面MBD的距離是()A. B.C. D.2.若,在直線l上,則直線l一個方向向量為()A. B.C. D.3.若直線a,b是異面直線,點O是空間中不在直線a,b上的任意一點,則()A.不存在過點O且與直線a,b都相交的直線B.過點O一定可以作一條直線與直線a,b都相交C.過點O可以作無數多條直線與直線a,b都相交D.過點O至多可以作一條直線與直線a,b都相交4.已知雙曲線的左焦點為,,為雙曲線的左、右頂點,漸近線上的一點滿足,且,則雙曲線的離心率為()A. B.C. D.5.設P是拋物線上的一個動點,F為拋物線的焦點.若,則的最小值為()A. B.C.4 D.56.圍棋起源于中國,據先秦典籍世本記載:“堯造圍棋,丹朱善之”,至今已有四千多年歷史.圍棋不僅能抒發意境、陶冶情操、修身養性、生慧增智,而且還與天象易理、兵法策略、治國安邦等相關聯,蘊含著中華文化的豐富內涵.在某次國際圍棋比賽中,規定甲與乙對陣,丙與丁對陣,兩場比賽的勝者爭奪冠軍,根據以往戰績,他們之間相互獲勝的概率如下:甲乙丙丁甲獲勝概率乙獲勝概率丙獲勝概率丁獲勝概率則甲最終獲得冠軍的概率是()A.0.165 B.0.24C.0.275 D.0.367.已知等差數列共有項,其中奇數項之和為290,偶數項之和為261,則的值為()A.30 B.29C.28 D.278.設數列的前項和為,數列是公比為2的等比數列,且,則()A.255 B.257C.127 D.1299.已知數列的通項公式為,是數列的最小項,則實數的取值范圍是()A. B.C. D.10.直線與直線交于點Q,m是實數,O為坐標原點,則的最大值是()A.2 B.C. D.411.設圓上的動點到直線的距離為,則的取值范圍是()A. B.C. D.12.已知拋物線y2=2px(p>0)的焦點為F,準線為l,M是拋物線上一點,過點M作MN⊥l于N.若△MNF是邊長為2的正三角形,則p=()A. B.C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.對某市“四城同創”活動中100名志愿者的年齡抽樣調查統計后得到頻率分布直方圖(如圖),但是年齡組為的數據不慎丟失,則依據此圖可估計該市“四城同創”活動中志愿者年齡在的人數為________14.某古典概型的樣本空間,事件,則___________.15.已知函數在R上連續且可導,為偶函數且,其導函數滿足,則不等式的解集為___.16.函數在點處的切線方程是_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某微小企業員工的年齡分布莖葉圖如圖所示:(1)求該公司員工年齡的極差和第25百分位數;(2)從該公司員工中隨機抽取一位,記所抽取員工年齡在區間內為事件,所抽取員工年齡在區間內為事件,判斷事件與是否互相獨立,并說明理由;18.(12分)已知橢圓C:的長軸長為,P是橢圓上異于頂點的一個動點,O為坐標原點,A為橢圓C的上頂點,Q為PA的中點,且直線PA與直線OQ的斜率之積恒為-2.(1)求橢圓C的方程;(2)若斜率為k且過上焦點F的直線l與橢圓C相交于M,N兩點,當點M,N到y軸距離之和最大時,求直線l的方程.19.(12分)已知點F為拋物線的焦點,點在拋物線上,且.(1)求該拋物線的方程;(2)若點A在第一象限,且拋物線在點A處的切線交y軸于點M,求的面積.20.(12分)如圖,在直三棱柱中,,,.M為側棱的中點,連接,,CM.(1)證明:AC平面;(2)證明:平面;(3)求二面角的大小.21.(12分)已知橢圓與直線相切,點G為橢圓上任意一點,,,且的最大值為3(1)求橢圓C的標準方程;(2)設直線與橢圓C交于不同兩點E,F,點O為坐標原點,且,當的面積取最大值時,求的取值范圍22.(10分)如圖,已知拋物線的焦點為,點是軸上一定點,過的直線交與兩點.(1)若過的直線交拋物線于,證明縱坐標之積為定值;(2)若直線分別交拋物線于另一點,連接交軸于點.證明:成等比數列.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】等體積法求解點到平面的距離.【詳解】連接,,則,,由勾股定理得:,,取BD中點E,連接ME,由三線合一得:ME⊥BD,則,故,設到平面MBD的距離是,則,解得:,故點到平面MBD的距離是.故選:A2、C【解析】利用直線的方向向量的定義直接求解.【詳解】因為,在直線l上,所以直線l的一個方向向量為.故選:C.3、D【解析】設直線與點確定平面,由題意可得直線與平面相交或平行.分兩種情形,畫圖說明即可.【詳解】點是空間中不在直線,上的任意一點,設直線與點確定平面,由題意可得,故直線與平面相交或平行.(1)若直線與平面相交(如圖1),記,①若,則不存在過點且與直線,都相交的直線;②若與不平行,則直線即為過點且與直線,都相交的直線.(2)若直線與平面平行(如圖2),則不存在過點且與直線,都相交的直線.綜上所述,過點至多有一條直線與直線,都相交.故選:D.4、C【解析】由雙曲線的漸近線方程和兩點的距離公式,求得點的坐標和,在中,利用余弦定理,求得的關系式,再由離心率公式,計算即可求解.【詳解】由題意,雙曲線,可得,設在漸近線上,且點在第一象限內,由,解得,即點,所以,在中,由余弦定理可得,可得,即,所以雙曲線離心率為.故選:C.【點睛】求解橢圓或雙曲線的離心率的三種方法:1、定義法:通過已知條件列出方程組,求得得值,根據離心率的定義求解離心率;2、齊次式法:由已知條件得出關于的二元齊次方程,然后轉化為關于的一元二次方程求解;3、特殊值法:通過取特殊值或特殊位置,求出離心率.5、C【解析】作出圖形,過點作拋物線準線的垂線,由拋物線的定義得,從而得出,再由、、三點共線時,取最小值得解.【詳解】,所以在拋物線的內部,過點作拋物線準線的垂線,由拋物線的定義得,,當且僅當、、三點共線時,等號成立,因此,的最小值為.故選:C.6、B【解析】先求出甲第一輪勝出的概率,再求出甲第二輪勝出的概率,即可得出結果.【詳解】甲最終獲得冠軍的概率,故選:B.7、B【解析】由等差數列的求和公式與等差數列的性質求解即可【詳解】奇數項共有項,其和為,∴偶數項共有n項,其和為,∴故選:B8、C【解析】由題設可得,再由即可求值.【詳解】由數列是公比為2的等比數列,且,∴,即,∴.故選:C.9、D【解析】利用最值的含義轉化為不等式恒成立問題解決即可【詳解】解:由題意可得,整理得,當時,不等式化簡為恒成立,所以,當時,不等式化簡為恒成立,所以,綜上,,所以實數的取值范圍是,故選:D10、B【解析】求出兩直線的交點坐標,結合兩點間的距離公式得到,進而可以求出結果.【詳解】因為與的交點坐標為所以,當時,,所以的最大值是,故選:B.11、C【解析】求出圓心到直線距離,再借助圓的性質求出d的最大值與最小值即可.【詳解】圓的方程化為,圓心為,半徑為1,則圓心到直線的距離,即直線和圓相離,因此,圓上的動點到直線的距離,有,,即,即的取值范圍是:.故選:C12、C【解析】根據正三角形的性質,結合拋物線的性質進行求解即可.【詳解】如圖所示:準線l與橫軸的交點為,由拋物線的性質可知:,因為若△MNF是邊長為2的正三角形,所以,,顯然,在直角三角形中,,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先根據頻率分布直方圖計算出年齡在的頻率,從而可計算出年齡在的人數.【詳解】年齡在的頻率為,所以年齡在的人數為.故答案為:.14、##0.5【解析】根據定義直接計算得到答案.【詳解】.故答案為:.15、【解析】由已知條件可得圖象關于對稱,在上遞增,在上遞減,然后分四種情況討論求解即可【詳解】因為為偶函數,所以的圖象關于軸對稱,所以的圖象關于對稱,因為,所以當時,,當時,,所以在上遞增,在上遞減,由,得,或,或,或,解得,或,或,或,綜上,,所以等式的解集為故答案為:16、【解析】求得函數的導數,得到且,再結合直線的點斜式,即可求解.【詳解】由題意,函數,可得,則且,所以在點處切線方程是,即故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)極差為;第25百分位數為(2)事件和相互獨立,理由見解析【解析】(1)根據定義直接計算極差和百分位數得到答案.(2)計算得到,,,即,得到答案.【小問1詳解】員工年齡的極差為,,故第25百分位數為.【小問2詳解】,,,故,故事件和相互獨立.18、(1)(2)【解析】(1)設點,求出直線、直線的斜率相乘可得,結合可得答案;(2)設直線l的方程為與橢圓方程聯立,代入得,設,再利用基本不等式可得答案.【小問1詳解】由題意可得,,即,則,設點,∵Q為的中點,∴,∴直線斜率,直線的斜率,∴,又∵,∴,則,解得,∴橢圓C的方程為.【小問2詳解】由(1)知,設直線l的方程為,聯立化簡得,,設,則,易知M,N到y軸的距離之和為,,設,∴,當且僅當即時等號成立,所以當時取得最大值,此時直線l的方程為.19、(1);(2)10.【解析】(1)由根據拋物線的定義求出可得拋物線方程;(2)求出拋物線過點A的切線,得出點M的坐標即可求三角形面積.【小問1詳解】由拋物線的定義可知,即,拋物線的方程為.【小問2詳解】,且A在第一象限,,即A(4,4),顯然切線的斜率存在,故可設其方程為,由,消去得,即,令,解得,切線方程為.令x=0,得,即,又,,.20、(1)證明見詳解;(2)證明見詳解;(3)【解析】小問1:由于,根據線面平行判定定理即可證明;小問2:以為原點,分別為軸建立空間坐標系,根據向量垂直關系即可證明;小問3:分別求得平面與平面的法向量,根據向量夾角公式即可求解【小問1詳解】在直三棱柱中,,且平面,平面所以AC平面;【小問2詳解】因為,故以為原點,分別為軸建立空間坐標系如圖所示:則,所以則所以又平面,平面故平面;【小問3詳解】由,得,設平面的一個法向量為則得又因為平面的一個法向量為所以所以二面角的大小為21、(1)(2)【解析】(1)設點,根據題意,得到,根據向量數量積的坐標表示,得到,根據其最小值,求出,即可得出橢圓方程;(2)設,,,聯立直線與橢圓方程,根據韋達定理,由弦長公式,以及點到直線距離公式,求出的面積的最值,得到;得出點的軌跡為橢圓,且點為橢圓的左、右焦點,記,則,得到,根據對勾函數求出最值.【小問1詳解】設點,由題意知,所以:,則,當時,取得最大值,即,故橢圓C的標準方程是【小問2詳解】設,,,則由得,,點O到直線l的距離,對用均值不等式,則:當且僅當即,①,S取得最大值.此時,,,即,代入①式整理得,即點M的軌

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論