




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
天津市2025屆高一數學第一學期期末學業質量監測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.一個正三棱柱的三視圖如圖所示,則這個三棱柱的表面積為()A. B.C. D.2.函數,的最小值是()A. B.C. D.3.下列命題正確的是A.若兩條直線和同一個平面所成的角相等,則這兩條直線平行B.若一個平面內有三個點到另一個平面的距離相等,則這兩個平面平行C.若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行D.若兩個平面都垂直于第三個平面,則這兩個平面平行4.函數是()A.偶函數,在是增函數B.奇函數,在是增函數C.偶函數,在是減函數D.奇函數,在是減函數5.已知函數則函數的零點個數為()A.0 B.1C.2 D.36.已知直線的方程為,則該直線的傾斜角為A. B.C. D.7.已知直線,若,則的值為()A.8 B.2C. D.-28.如圖,把邊長為4的正方形ABCD沿對角線AC折起,當直線BD和平面ABC所成的角為時,三棱錐的體積為()A. B.C. D.9.設平面向量滿足,且,則的最大值為A.2 B.3C. D.10.若將函數圖象向左平移個單位,則平移后的圖象對稱軸為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設集合,對其子集引進“勢”的概念;①空集的“勢”最??;②非空子集的元素越多,其“勢”越大;③若兩個子集的元素個數相同,則子集中最大的元素越大,子集的“勢”就越大.最大的元素相同,則第二大的元素越大,子集的“勢”就越大,以此類推.若將全部的子集按“勢”從小到大順序排列,則排在第位的子集是_________.12.若直線:與直線:互相垂直,則實數的值為__________13.已知函數的零點為,則,則______14.寫出一個值域為,在區間上單調遞增的函數______15.已知,則_________.16.已知函數的部分圖像如圖所示,則_______________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在①函數的圖象關于原點對稱;②函數的圖象關于直線對稱;這兩個條件中任選一個,補充在下面問題中,并解答.已知函數,的圖象相鄰兩條對稱軸的距離為,(1)求函數的解析式;(2)求函數在上的取值范圍.18.已知函數f(x)=Asin(ωx+φ)的圖象的一部分如圖所示(1)求函數f(x)的解析式;(2)當時,求函數y=f(x)+f(x+2)的最大值與最小值及相應的x值19.已知函數f(x)的定義域為D,如果存在x0∈D,使得fx0=x0,則稱x0為f(x)的一階不動點;如果存在x0∈D(1)分別判斷函數y=2x與(2)求fx=x(3)求fx20.已知p:A={x|x2-2x-3≤0,x∈R},q:B={x|x2-2mx+m2-9≤0,x∈R,m∈R}(1)若A∩B={x|1≤x≤3,x∈R},求實數m值;(2)若﹁q是p的必要條件,求實數m的取值范圍21.已知直線l的方程為.(1)求過點A(3,2),且與直線l垂直的直線l1方程;(2)求與直線l平行,且到點P(3,0)的距離為的直線l2的方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由三視圖可知,該正三棱柱的底面是邊長為2cm的正三角形,高為2cm,根據面積公式計算可得結果.【詳解】正三棱柱如圖,有,,三棱柱的表面積為.故選:D【點睛】本題考查了根據三視圖求表面積,考查了正三棱柱結構特征,屬于基礎題.2、D【解析】利用基本不等式可求得的最小值.【詳解】,當且僅當時,即當時,等號成立,故函數的最小值為.故選:D.3、C【解析】若兩條直線和同一平面所成角相等,這兩條直線可能平行,也可能為異面直線,也可能相交,所以A錯;一個平面不在同一條直線的三點到另一個平面的距離相等,則這兩個平面平行,故B錯;若兩個平面垂直同一個平面兩平面可以平行,也可以垂直;故D錯;故選項C正確.[點評]本題旨在考查立體幾何的線、面位置關系及線面的判定和性質,需要熟練掌握課本基礎知識的定義、定理及公式.4、B【解析】利用奇偶性定義判斷的奇偶性,根據解析式結合指數函數的單調性判斷的單調性即可.【詳解】由且定義域為R,故為奇函數,又是增函數,為減函數,∴為增函數故選:B.5、C【解析】的零點個數等于的圖象與的圖象的交點個數,作出函數f(x)和的圖像,根據圖像即可得到答案.【詳解】的零點個數等于的圖象與的圖象的交點個數,由圖可知,的圖象與的圖象的交點個數為2.故選:C.6、B【解析】直線的斜率,其傾斜角為.考點:直線的傾斜角.7、D【解析】根據兩條直線垂直,列方程求解即可.【詳解】由題:直線相互垂直,所以,解得:.故選:D【點睛】此題考查根據兩條直線垂直,求參數的取值,關鍵在于熟練掌握垂直關系的表達方式,列方程求解.8、C【解析】取的中點為,連接,過作的垂線,垂足為,可以證明平面、平面,求出的面積后利用公式求出三棱錐的體積.【詳解】取的中點為,連接,過作的垂線,垂足為.因為為等腰直角三角形,故,同理,而,故平面,而平面,故平面平面,因為平面平面,平面,故平面,故為直線BD和平面ABC所成的角,所以.在等腰直角形中,因為,,故,同理,故為等邊三角形,故.故.故選:C.【點睛】思路點睛:線面角的構造,往往需要根據面面垂直來構建線面垂直,而后者來自線線垂直,注意對稱的圖形蘊含著垂直關系,另外三棱錐體積的計算,需選擇合適的頂點和底面.9、C【解析】設,∵,且,∴∵,當且僅當與共線同向時等號成立,∴的最大值為.選C點睛:由于向量,且,因此向量確定,這是解題的基礎也是關鍵.然后在此基礎上根據向量模的三角不等式可得的范圍,解題時要注意等號成立的條件10、A【解析】由圖象平移寫出平移后的解析式,再由正弦函數的性質求對稱軸方程.【詳解】,令,,則且.故選:A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據題意依次按“勢”從小到大順序排列,得到答案.【詳解】根據題意,將全部的子集按“勢”從小到大順序排列為:,,,,,,,.故排在第6的子集為.故答案為:12、-2【解析】由于兩條直線垂直,故.13、2【解析】根據函數的單調性及零點存在定理即得.【詳解】∵函數,函數在上單調遞增,又,∴,即.故答案為:2.14、【解析】綜合考慮值域與單調性即可寫出滿足題意的函數解析式.【詳解】,理由如下:為上的減函數,且,為上的增函數,且,,故答案為:15、【解析】由題意可得:點睛:熟記同角三角函數關系式及誘導公式,特別是要注意公式中的符號問題;注意公式的變形應用,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α及sinα=tanα·cosα等.這是解題中常用到的變形,也是解決問題時簡化解題過程的關鍵所在16、【解析】首先確定函數的解析式,然后求解的值即可.【詳解】由題意可得:,當時,,令可得:,據此有:.故答案為:.【點睛】已知f(x)=Acos(ωx+φ)(A>0,ω>0)的部分圖象求其解析式時,A比較容易看圖得出,困難的是求待定系數ω和φ,常用如下兩種方法:(1)由ω=即可求出ω;確定φ時,若能求出離原點最近的右側圖象上升(或下降)的“零點”橫坐標x0,則令ωx0+φ=0(或ωx0+φ=π),即可求出φ.(2)代入點的坐標,利用一些已知點(最高點、最低點或“零點”)坐標代入解析式,再結合圖形解出ω和φ,若對A,ω的符號或對φ的范圍有要求,則可用誘導公式變換使其符合要求.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)先根據對稱性和周期公式求,選擇①,化簡,根據對稱性利用整理代入法求參數即可;條件②,直接根據對稱性,利用整理代入法求參數即可;(2)先利用輔助角公式,化簡函數,再由,得到,即得取值范圍.【詳解】解:函數的圖象相鄰兩條對稱軸的距離為,,即,,.(1)若補充條件①,函數的圖象關于原點對稱.即,,時,,函數的解析式為;若補充條件②,函數的圖象關于直線對稱,,,,,時,,函數的解析式為;(2)由(1)得,,,,,函數在上的取值范圍是.18、(1)(2),,,【解析】試題分析:(1)由圖象知,,從而可求得,繼而可求得;(2)利用三角函數間的關系可求得,利用余弦函數的性質可求得時的最大值與最小值及相應的值試題解析::(1)由圖象知,∴∴圖象過點,則,∵,∴,于是有(2).∵,∴當,即時,;當,即時,考點:(1)由的部分圖象求其解析式;(2)正弦函數的定義域和值域.【方法點晴】本題考查由的部分圖象確定其解析式,考查余弦函數的性質,考查規范分析與解答的能力,屬于中檔題.由三角函數圖象求解析式時,主要是通過圖象最高點或最低點得到振幅,通過圖象的周期得到,最后代入特殊點得到的值;在求三角函數最值時,主要是通過輔角公式將其化為一般形式或,在得最值.19、(1)y=2x不存在一階不動點,(2)0,±1(3)3【解析】(1)根據一階不動點的定義直接分別判斷即可;(2)根據一階不動點的定義直接計算;(3)根據分段函數寫出ffx【小問1詳解】設函數gx=2x-x,x∈R所以g'x=又g'0=所以?x0∈0,1,時所以gx在-∞,所以gx≥x所以y=2設函數y=x存在一階不動點,即存在x0∈0,+∞上,使x【小問2詳解】由已知得fx0=x0所以fx=xx2-1【小問3詳解】由fx當0<x≤1時,fx=e設Fx=2-ex2-x,x∈0,1,F'x=-ex2-1<0恒成立,所以Fx在0,1上單調遞減,且F當1<x<4時,fx=2-x所以1<x<2時,fx=2-x2∈1,32,ffx=2-2-x當2≤x<4時,fx=2-x2∈0,1,ffx=e2-x2,設Gx=e2-x2-x,G'綜上所述,fx的二階周期點的個數為320、(1)m=4;(2)m>6或m<-4【解析】(1)分別求得集合A、B,根據交集的結果,列出方程,即可得答案.(2)根據題意可得p是﹁q的充分條件,可得,先求得,根據包含關系,列出不等式,即可得答案.【詳解】解:(1)由題意得:A={x|-1≤x≤3,x∈R},B={x|m-3≤x≤m+3,x∈
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 店面形象規范管理辦法
- 工程全面預算管理辦法
- 外地常駐員工管理辦法
- 維修費用控制管理辦法
- 私人扶貧基金管理辦法
- 育嬰師職業簡介課件模板
- 消防培訓師課件
- 2025年滌綸高彈絲項目提案報告
- 腸道健康養生課件
- 腸癌術后護理
- 2025屆山東煙臺中考歷史真題試卷【含答案】
- 志愿者心理調適培訓(改)
- 個人信息保護與安全培訓
- 運輸公司交通安全培訓課件
- 2025年陜西省中考數學試題(解析版)
- 《康復治療學專業畢業實習》教學大綱
- 北師大版7年級數學下冊期末真題專項練習 03 計算題(含答案)
- 職業衛生管理制度和操作規程標準版
- 黨課課件含講稿:《關于加強黨的作風建設論述摘編》輔導報告
- 國家開放大學行管專科《監督學》期末紙質考試總題庫2025春期版
- 高中家長會 共筑夢想,攜手未來課件-高二下學期期末家長會
評論
0/150
提交評論