




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省溫州市示范名校2025屆數學高二上期末調研模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,A,B,C三點不共線,O為平面ABC外一點,且平面ABC中的小方格均為單位正方形,,,則()A.1 B.C.2 D.2.2019年末,武漢出現新型冠狀病毒肺炎(COVID—19)疫情,并快速席卷我國其他地區,傳播速度很快.因這種病毒是以前從未在人體中發現的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大武漢市出現疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發熱患者和與確診患者的密切接觸者等“四類”人員,強化網格化管理,不落一戶、不漏一人在排查期間,一戶6口之家被確認為“與確診患者的密切接觸者”,這種情況下醫護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現陽性,則該家庭為“感染高危戶”.設該家庭每個成員檢測呈陽性的概率均為p(0<p<1)且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為f(p),當p=p0時,f(p)最大,則p0=()A. B.C. D.3.定義焦點相同,且離心率互為倒數的橢圓和雙曲線為一對相關曲線.已知,是一對相關曲線的焦點,Р是這對相關曲線在第一象限的交點,則點Р與以為直徑的圓的位置關系是()A.在圓外 B.在圓上C.在圓內 D.不確定4.已知點A、是拋物線:上的兩點,且線段過拋物線的焦點,若的中點到軸的距離為3,則()A.3 B.4C.6 D.85.已知,,且,則()A. B.C. D.6.雙曲線的漸近線方程為A. B.C. D.7.已知數列滿足,,令,若對于任意不等式恒成立,則實數t的取值范圍為()A. B.C. D.8.已知直線與橢圓:()相交于,兩點,且線段的中點在直線:上,則橢圓的離心率為()A. B.C. D.9.變量,滿足約束條件則的最小值為()A. B.C. D.510.設直線,.若,則的值為()A.或 B.或C. D.11.已知圓M的圓心在直線上,且點,在M上,則M的方程為()A. B.C. D.12.已知雙曲線C的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線C:的一個焦點坐標為,則其漸近線方程為__________14.若直線與函數的圖象有三個交點,則實數a的取值范圍是_________15.設等差數列{an}的前n項和為Sn,且S2020>0,S2021<0,則當n=_____________時,Sn最大.16.已知雙曲線的左焦點為F,點P在雙曲線右支上,若線段PF的中點在以原點O為圓心,為半徑的圓上,且直線PF的斜率為,則該雙曲線的離心率是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數列的前項和為,,且滿足,.(1)求數列的通項公式;(2)證明:對一切正整數,有.18.(12分)已知圓關于直線對稱,且圓心C在軸上.(1)求圓C的方程;(2)直線與圓C交于A、B兩點,若為等腰直角三角形,求直線的方程.19.(12分)已知△ABC的內角A,B,C的對邊分別是a,b,c,且.(1)求角C的大小;(2)若,求△ABC面積的最大值.20.(12分)已知(1)求的最小正周期及單調遞增區間;(2)已知鈍角內角A,B,C的對邊長分別a,b,c,若,,.求a的值21.(12分)如圖,在多面體中,和均為等邊三角形,D是的中點,.(1)證明:;(2)若,求多面體的體積.22.(10分)已知等差數列{an}的前n項和為Sn,數列{bn}滿足:點(n,bn)在曲線y=上,a1=b4,___,數列{}的前n項和為Tn從①S4=20,②S3=2a3,③3a3﹣a5=b2這三個條件中任選一個,補充到上面問題的橫線上并作答(1)求數列{an},{bn}的通項公式;(2)是否存在正整數k,使得Tk>,且bk>?若存在,求出滿足題意的k值;若不存在,請說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據向量的線性運算,將向量表示為,再根據向量的數量積的運算進行計算可得答案,【詳解】因為,所以=,故選:B.2、A【解析】解設事件A為:檢測了5人確定為“感染高危戶”,設事件B為:檢測了6人確定為“感染高危戶”,則,再利用基本不等式法求解.【詳解】解:設事件A為:檢測了5人確定為“感染高危戶”,設事件B為:檢測了6人確定為“感染高危戶”,則,,所以,令,則,,當且僅當,即時,等號成立,即,故選:A3、A【解析】設橢圓的長軸長為,橢圓的焦距為,雙曲線的實軸長為,根據題意可得,設,根據橢圓與雙曲線的定義將分別用表示,設,再根據兩點的距離公式將點的坐標用表示,從而可判斷出點與圓的位置關系.【詳解】解:設橢圓的長軸長為,橢圓的焦距為,雙曲線的實軸長為,設橢圓和雙曲線的離心率分別為,則,所以,以為直徑的圓的方程為,設,則有,所以,設,,所以①,②,則①②得,所以,所以,將代入②得,所以,,則點到圓心的距離為,所以點Р在以為直徑的圓外.故選:A.4、D【解析】直接根據拋物線焦點弦長公式以及中點坐標公式求結果【詳解】設,,則的中點到軸的距離為,則故選:D5、D【解析】利用空間向量共線的坐標表示可求得、的值,即可得解.【詳解】因為,則,所以,,,因此,.故選:D6、A【解析】根據雙曲線的漸近線方程知,,故選A.7、D【解析】根據遞推關系,利用裂項相消法,累加法求出,可得,原不等式轉化為恒成立求解即可.【詳解】,,,由累加法可得,又,,符合上式,,,對于任意不等式恒成立,則,解得.故選:D8、A【解析】將直線代入橢圓方程整理得關于的方程,運用韋達定理,求出中點坐標,再由條件得到,再由,,的關系和離心率公式,即可求出離心率.【詳解】解:將直線代入橢圓方程得,,即,設,,,,則,即中點的橫坐標是,縱坐標是,由于線段的中點在直線上,則,又,則,,即橢圓的離心率為.故選:A9、A【解析】根據不等式組,作出可行域,數形結合即可求z的最小值.【詳解】根據不等式組作出可行域如圖,,則直線過A(-1,0)時,z取最小值.故選:A.10、A【解析】由兩直線垂直可得出關于實數的等式,即可解得實數的值.【詳解】因為,則,解得或.故選:A.11、C【解析】由題設寫出的中垂線,求其與的交點即得圓心坐標,再應用兩點距離公式求半徑,即可得圓的方程.【詳解】因為點,在M上,所以圓心在的中垂線上由,解得,即圓心為,則半徑,所以M的方程為故選:C12、B【解析】根據雙曲線的離心率,求出即可得到結論【詳解】∵雙曲線的離心率是,∴,即1+,即1,則,即雙曲線的漸近線方程為,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據雙曲線的定義由焦點坐標求出,即可得到雙曲線方程,從而得到其漸近線方程;【詳解】解:因為雙曲線C:的一個焦點坐標為,即,,又,所以,所以雙曲線方程為,所以雙曲線的漸近線為;故答案為:14、【解析】求導函數,分析導函數的符號,得出原函數的單調性和極值,由此可求得答案.【詳解】解:因為函數,則,所以當或時,,函數單調遞減;當時,,函數單調遞增,所以當時,函數取得極小值,當時,函數取得極大值,因為直線與函數的圖象有三個交點,所以實數a的取值范圍是,故答案為:.15、1010【解析】先由S2020>0,S2021<0,判斷出,,即可得到答案.【詳解】等差數列{an}的前n項和為,所以,因為1+2020=1010+1011,所以,所以.,所以,所以當n=1010時,Sn最大.故答案為:1010.16、3【解析】如圖利用條件可得,,然后利用雙曲線的定義可得,即求.【詳解】如圖設雙曲線的右焦點為,線段PF的中點為M,連接,則,又直線PF的斜率為,∴在直角三角形中,,∴,∴,即,∴.故答案:3.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)證明見解析.【解析】(1)利用關系可得,根據等比數列的定義易知為等比數列,進而寫出的通項公式;(2)由,將不等式左側放縮,即可證結論.【小問1詳解】當時,,,兩式相減得:,整理可得:,而,所以是首項為2,公比為1的等比數列,故,即,.【小問2詳解】,..18、(1)(2)或【解析】(1)根據題意得到等量關系,求出,,進而求出圓的方程;(2)結合第一問求出的圓心和半徑,及題干條件得到圓心到直線的距離為,列出方程,求出的值,進而得到直線方程【小問1詳解】由題意得:直線過圓心,即,且,解得:,,所以圓C的方程為;【小問2詳解】的圓心為,半徑為2,由題意得:,圓心到直線的距離為,即,解得:或,所以直線的方程為:或.19、(1)(2)【解析】(1)對,利用正弦定理和誘導公式整理化簡得到,即可求出;(2)先由正弦定理求出c,再由余弦定理和基本不等式求出ab的最大值為1,代入面積公式求面積.【小問1詳解】對于.由正弦定理知:即.所以.所以.所以因為,,所以.所以.因為,所以.【小問2詳解】因為,由正弦定理知:.由余弦定理知:,所以.當且僅當時,等號成立,所以ab的最大值為1.所以,即面積的最大值為.20、(1),;(2)2.【解析】(1)利用三角恒等變換公式化簡函數,再利用三角函數性質計算作答.(2)由(1)的結論及已知求出角C,再利用余弦定理計算判斷作答.【小問1詳解】依題意,,則的最小正周期,由,解得,則在上單調遞增,所以的最小正周期為,遞增區間為.【小問2詳解】由(1)知,,即,在中,,,則,即,,于是得,解得,在中,由余弦定理得:,即,解得或,當時,,為直角三角形,與是鈍角三角形矛盾,當時,,,此時,是鈍角三角形,則,所以a的值是2.21、(1)見詳解(1).(2)16【解析】(1)證線面垂直從而證線線垂直.(2)把面體看成兩個錐體,由已知線面垂直得高,并進一步可求錐體底面邊長,從而得解.【小問1詳解】因為,所以共面,連接、,因為和均為等邊三角形,D是的中點,所以,,,所以面平,平面,【小問2詳解】因為,,四邊形是平行四邊形,和均為等邊三角形,D是的中點,所以,,平行四邊形是正方形形,,.22、(1)條件選擇見解析;an=2n,bn=25﹣n.(2)不存在,理由見解析.【解析】(1)把點(n,bn)代入曲線y=可得到bn=25﹣n,進而求出a1,設等差數列{an}的公差為d,選①S4=20,利用等差數列的前n項和公式可求出d,從而得到an;若選②S3=2a3,利用等差數列的前n項和公式可求出d,從而得到an;若選③3a3﹣a5=b2,利用等差數列的通項公式公式可求出d,從而得到an;(2)由(1)可知Sn==n(1+n),=,再利用裂項相消法求出Tn=1﹣,不等式無解,即不存在正整數k,使得Tk>,且bk>【小問1詳解】解:∵點(n,bn)在曲線y=上,∴=25﹣n,∴a1=b4=25﹣4=2,設等差數列{an}的公差為d,若選①S4=20,則S4==20,解得d=2,∴an=2+2(n﹣1)=2n;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云集微商管理制度
- 井下用電管理制度
- 井巷質量管理制度
- 親子農場管理制度
- 人員考核管理制度
- 人員過程管理制度
- 人才儲備管理制度
- 人才流失管理制度
- 人材梯隊管理制度
- 人臉測溫管理制度
- 【上料機械手結構中的真空系統的設計計算案例1100字】
- 西方美術史試題及答案
- 七年級數學下學期期末測試卷(1)(學生版+解析)-2025年七年級數學下學期期末總復習(北師大版)
- 校園短劇創作與演出指導行業跨境出海項目商業計劃書
- 2025年北京豐臺區九年級中考二模英語試卷試題(含答案詳解)
- 【7歷期末】安徽省合肥市包河區2023-2024學年部編版七年級下學期期末歷史試卷
- 新生兒收治流程規范與實施
- T/CBMCA 017-2021建筑用覆膜鋼板
- 《重癥監護病房的臨終關懷和姑息治療指南》解讀
- 2025年初中地理會考試卷
- 中國鈦基復合材料行業市場前景預測及投資價值評估分析報告
評論
0/150
提交評論