吉林省延邊州汪清縣四中2025屆高二上數學期末考試模擬試題含解析_第1頁
吉林省延邊州汪清縣四中2025屆高二上數學期末考試模擬試題含解析_第2頁
吉林省延邊州汪清縣四中2025屆高二上數學期末考試模擬試題含解析_第3頁
吉林省延邊州汪清縣四中2025屆高二上數學期末考試模擬試題含解析_第4頁
吉林省延邊州汪清縣四中2025屆高二上數學期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省延邊州汪清縣四中2025屆高二上數學期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正方形ABCD的邊長為2,E,F分別為CD,CB的中點,分別沿AE,AF將三角形ADE,ABF折起,使得點B,D恰好重合,記為點P,則AC與平面PCE所成角等于()A. B.C. D.2.如果,那么下列不等式成立的是()A. B.C. D.3.已知是橢圓上的一點,則點到兩焦點的距離之和是()A.6 B.9C.14 D.104.在等差數列{an}中,a1=1,,則a7=()A.13 B.14C.15 D.165.已知直線經過拋物線的焦點,且與該拋物線交于,兩點,若滿足,則直線的方程為()A. B.C. D.6.已知向量,,且,則的值是()A. B.C. D.7.已知等差數列,,,則數列的前項和為()A. B.C. D.8.設橢圓C:的右焦點為F,過原點O的動直線l與橢圓C交于A,B兩點,那么的周長的取值范圍為()A. B.C. D.9.俗話說“好貨不便宜,便宜沒好貨”,依此判斷,“不便宜”是“好貨”的()A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件10.已知直線,橢圓.若直線l與橢圓C交于A,B兩點,則線段AB的中點的坐標為()A. B.C. D.11.已知函數的圖象是下列四個圖象之一,且其導函數的圖象如圖所示,則該函數的圖象是()A. B.C. D.12.動點到兩定點,的距離和是,則動點的軌跡為()A.橢圓 B.雙曲線C.線段 D.不能確定二、填空題:本題共4小題,每小題5分,共20分。13.從雙曲線上一點作軸的垂線,垂足為,則線段中點的軌跡方程為___________.14.已知是等差數列,,,設,數列前n項的和為,則______15.如圖所示,奧林匹克標志由五個互扣的環圈組成,五環象征五大洲的團結.若從該奧林匹克標志的五個環圈中任取2個,則這2個環圈恰好相交的概率為___________.16.若直線:x-2y+1=0與直線:2x+my-1=0相互垂直,則實數m的值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數.(1)若在點處的切線為,求a,b的值;(2)求的單調區間.18.(12分)年月初,浙江杭州、寧波、紹興三地相繼爆發新冠肺炎疫情.疫情期間口罩需求量大增,某醫療器械公司開始生產口罩,并且對所生產口罩的質量按指標測試分數進行劃分,其中分數不小于的為合格品,否則為不合格品,現隨機抽取件口罩進行檢測,其結果如表:測試分數數量(1)根據表中數據,估計該公司生產口罩的不合格率;(2)若用分層抽樣的方式按是否合格從所生產口罩中抽取件,再從這件口罩中隨機抽取件,求這件口罩全是合格品的概率19.(12分)已知數列為等差數列,,數列滿足,且(1)求的通項公式;(2)設,記數列的前項和為,求證:20.(12分)已知橢圓的離心率為,且經過點.(1)求橢圓的方程;(2)經過點的直線與橢圓交于不同的兩點,,為坐標原點,若的面積為,求直線的方程.21.(12分)如圖,在三棱柱中,平面,,.(1)求證:平面;(2)點M在線段上,且,試問在線段上是否存在一點N,滿足平面,若存在求的值,若不存在,請說明理由?22.(10分)已知橢圓的左、右焦點分別為,離心率為,圓:過橢圓的三個頂點,過點的直線(斜率存在且不為0)與橢圓交于兩點(1)求橢圓的標準方程(2)證明:在軸上存在定點,使得為定值,并求出定點的坐標

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】如圖,以PE,PF,PA分別為x,y,z軸建立空間直角坐標系,利用空間向量求解【詳解】由題意得,因為正方形ABCD的邊長為2,E,F分別為CD,CB的中點,所以,所以,所以所以PA,PE,PF三線互相垂直,故以PE,PF,PA分別為x,y,z軸建立空間直角坐標系,則,,,,設,則由,,,得,解得,則設平面的法向量為,則,令,則,因為,所以AC與平面PCE所成角的正弦值,因為AC與平面PCE所成角為銳角,所以AC與平面PCE所成角為,故選:A2、D【解析】利用不等式的性質分析判斷每個選項.【詳解】由不等式的性質可知,因為,所以,,故A錯誤,D正確;由,可得,,故B,C錯誤.故選:D3、A【解析】根據橢圓的定義,可求得答案.【詳解】由可知:,由是橢圓上的一點,則點到兩焦點的距離之和為,故選:A4、A【解析】利用等差數列的基本量,即可求解.【詳解】設等差數列的公差為,,解得:,則.故選:A5、C【解析】求出拋物線的焦點,設出直線方程,代入拋物線方程,運用韋達定理和向量坐標表示,解得,即可得出直線的方程.【詳解】解:拋物線的焦點,設直線為,則,整理得,則,.由可得,代入上式即可得,所以,整理得:.故選:C.【點睛】本題考查直線和拋物線的位置關系,主要考查韋達定理和向量共線的坐標表示,考查運算能力,屬于中檔題.6、A【解析】求出向量,的坐標,利用向量數量積坐標表示即可求解.【詳解】因為向量,,所以,,因為,所以,解得:,故選:A.7、A【解析】求出通項,利用裂項相消法求數列的前n項和.【詳解】因為等差數列,,,所以,所以,所以數列的前項和為故B,C,D錯誤.故選:A.8、A【解析】根據橢圓的對稱性橢圓的定義可得,結合的范圍求的周長的取值范圍.【詳解】的周長,又因為A,B兩點為過原點O的動直線l與橢圓C的交點,所以A,B兩點關于原點對稱,橢圓C的左焦點為,則,所以,又因為三點不共線,所以,所以的周長的取值范圍為,故選:A.9、A【解析】將“好貨”與“不便宜”進行相互推理即可求得答案.【詳解】根據題意,“好貨”一定“不便宜”,但是“不便宜”不一定是“好貨”,所以“不便宜”是“好貨”的必要不充分條件.故選:A.10、B【解析】聯立直線方程與橢圓方程,消y得到關于x的一元二次方程,根據韋達定理可得,進而得出中點的橫坐標,代入直線方程求出中點的縱坐標即可.【詳解】由題意知,,消去y,得,則,,所以A、B兩點中點的橫坐標為:,所以中點的縱坐標為:,即線段AB的中點的坐標為.故選:B11、A【解析】利用導數與函數的單調性之間的關系及導數的幾何意義即得.【詳解】由函數f(x)的導函數y=f′(x)的圖像自左至右是先減后增,可知函數y=f(x)圖像的切線的斜率自左至右先減小后增大,且,在處的切線的斜率為0,故BCD錯誤,A正確.故選:A.12、A【解析】根據橢圓的定義,即可得答案.【詳解】由題意可得,根據橢圓定義可得,P點的軌跡為橢圓,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】根據題意,設,進而根據中點坐標公式及點P已知雙曲線上求得答案.【詳解】由題意,設,則,則,即,因為,則,即的軌跡方程為.14、-3033【解析】先求得,進而得到,再利用并項法求解.【詳解】解:因為是等差數列,且,,所以,解得,所以,則,所以,,,,.故答案為:-303315、【解析】利用古典概型求概率.【詳解】從該奧林匹克標志的五個環圈中任取2個,共有10種情況,其中這2個環圈恰好相交的情況有4種,則所求的概率.故答案為:.16、1【解析】由兩條直線垂直可知,進而解得答案即可.【詳解】因為兩條直線垂直,所以.故答案為:1.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)答案見解析.【解析】(1)已知切線求方程參數,第一步求導,切點在曲線,切點在切線,切點處的導數值為切線斜率.(2)第一步定義域,第二步求導,第三步令導數大于或小于0,求解析,即可得到答案.【小問1詳解】的定義域為,,因為在點處的切線為,所以,所以;所以把點代入得:.即a,b的值為:,.【小問2詳解】由(1)知:.①當時,在上恒成立,所以在單調遞減;②當時,令,解得:,列表得:x-0+單調遞減極小值單調遞增所以,時,的遞減區間為,單增區間為.綜上所述:當時,在單調遞減;當時,的遞減區間為,單增區間為.【點睛】導函數中得切線問題第一步求導,第二步列切點在曲線,切點在切線,切點處的導數值為切線斜率這三個方程,可解切線相關問題.18、(1);(2).【解析】(1)由題意知分數小于的產品為不合格品,故有件,一共有件口罩,即可求出口罩的不合格率.(2)先利用分層抽樣確定抽取的件口罩中合格產品和不合格產品的數量分別為件和件,再利用古典概型把所有基本事件種都列舉出來,在判斷件口罩全是合格品的事件有種情況,即可得到答案.【小問1詳解】在抽取的件產品中,不合格的口罩有(件)所以口罩為不合格品的頻率為,根據頻率可估計該公司所生產口罩的不合格率為【小問2詳解】由題意所抽取件口罩中不合格的件,合格的件設件合格口罩記為,件不合格口罩記為而從件口罩中抽取件,共有共種情況,這件口罩全是合格品的事件有共種情況故件口罩全是合格品的概率為19、(1);(2)證明見解析.【解析】(1)求出的值,可求得等差數列的公差,進而可求得數列的通項公式,再由前項和與通項的關系可求得的表達式,可求得,然后對是否滿足在時的表達式進行檢驗,綜合可得出數列的通項公式;(2)求得,利用裂項求和法可求得的表達式,利用不等式的性質和數列的單調性可證得所證不等式成立.【小問1詳解】解:因為,,所以,因為,,所以,設數列公差為,則,所以,當時,由,可得,所以,所以,因為滿足,所以,對任意的,【小問2詳解】證明:因為,所以,因為,所以,因為,所以,故數列單調遞增,當時,,所以20、(1);(2)或.【解析】(1)由離心率公式、將點代入橢圓方程得出橢圓的方程;(2)聯立橢圓和直線的方程,由判別式得出的范圍,再由韋達定理結合三角形面積公式得出,求出的值得出直線的方程.【詳解】解:(1)因為橢圓的離心率為,所以.①又因為橢圓經過點,所以有.②聯立①②可得,,,所以橢圓的方程為.(2)由題意可知,直線的斜率存在,設直線的方程為.由消去整理得,.因為直線與橢圓交于不同兩點,所以,即,所以設,,則,.由題意得,面積,即.因為的面積為,所以,即.化簡得,,即,解得或,均滿足,所以或.所以直線的方程為或.【點睛】關鍵點睛:在第二問中,關鍵是由韋達定理建立的關系,結合三角形面積公式求出斜率,得出直線的方程.21、(1)證明見解析;(2)存在,的值為.【解析】(1)先證明,再證明,由線面垂直的判定定理求證即可;(2)以為原點,為軸,為軸,為軸,建立空間直角坐標系,求出平面的法向量,由平面,利用向量法能求出的值【詳解】(1)在三棱柱中,平面ABC,,.∴,,,∵,∴平面,∵平面,∴,∵,∴平面.(2)以為原點,為軸,為軸,為軸,建立空間直角坐標系,如圖,,,,,所以,,設平面的法向量,則,取,得,點M在線段上,且,點N在線段上,設,,設,則,,,即,解得,,,∵,∴,解得.∴的值為.22、(1);(2)見解析,定點【解析】(1)先判斷圓經過橢圓的上、下頂點和右頂點,令圓方程中的,得,即.再由求即可.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論