2025屆重慶市主城區七校高二上數學期末經典試題含解析_第1頁
2025屆重慶市主城區七校高二上數學期末經典試題含解析_第2頁
2025屆重慶市主城區七校高二上數學期末經典試題含解析_第3頁
2025屆重慶市主城區七校高二上數學期末經典試題含解析_第4頁
2025屆重慶市主城區七校高二上數學期末經典試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆重慶市主城區七校高二上數學期末經典試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,為雙曲線的左,右頂點,點P在雙曲線C上,為等腰三角形,且頂角為,則雙曲線C的離心率為()A. B.C.2 D.2.如圖,我市某地一拱橋垂直軸截面是拋物線,已知水利人員在某個時刻測得水面寬,則此時刻拱橋的最高點到水面的距離為()A. B.C. D.3.已知點,,,動點P滿足,則的取值范圍為()A. B.C. D.4.已知拋物線y2=2px(p>0)的焦點為F,準線為l,M是拋物線上一點,過點M作MN⊥l于N.若△MNF是邊長為2的正三角形,則p=()A. B.C.1 D.25.下列橢圓中,焦點坐標是的是()A. B.C. D.6.已知是虛數單位,則復數在復平面內對應的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限7.()A.-2 B.0C.2 D.38.如果,那么下列不等式成立的是()A. B.C. D.9.設為等差數列的前項和,若,,則公差的值為()A. B.2C.3 D.410.一輛汽車做直線運動,位移與時間的關系為,若汽車在時的瞬時速度為12,則()A. B.C.2 D.311.“,”是“方程表示雙曲線”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知向量,,且,,,則一定共線的三點是()A.A,B,D B.A,B,CC.B,C,D D.A,C,D二、填空題:本題共4小題,每小題5分,共20分。13.已知數列滿足,則其通項公式_______14.已知圓C,直線l:,若圓C上恰有四個點到直線l的距離都等于1.則b的取值范圍為___.15.已知雙曲線的左、右焦點分別為,右頂點為,為雙曲線上一點,且,線段的垂直平分線恰好經過點,則雙曲線的離心率為_______16.隨機抽取某社區名居民,調查他們某一天吃早餐所花的費用(單位:元),所獲數據的莖葉圖如圖所示,則這個數據的眾數是_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知是等差數列,其n前項和為,已知(1)求數列的通項公式:(2)設,求數列的前n項和18.(12分)在等差數列中,記為數列的前項和,已知:.(1)求數列的通項公式;(2)求使成立的的值.19.(12分)已知A(-3,0),B(3,0),四邊形AMBN的對角線交于點D(1,0),kMA與kMB的等比中項為,直線AM,NB相交于點P.(1)求點M的軌跡C的方程;(2)若點N也在C上,點P是否在定直線上?如果是,求出該直線,如果不是,請說明理由.20.(12分)奮發學習小組共有3名學生,在某次探究活動中,他們每人上交了1份作業,現各自從這3份作業中隨機地取出了一份作業.(1)每個學生恰好取到自己作業的概率是多少?(2)每個學生不都取到自己作業的概率是多少?(3)每個學生取到的都不是自己作業的概率是多少?21.(12分)已知數列的前項和為,滿足_______請在①;②,;③三個條件中任選一個,補充在上面的橫線上,完成上述問題.注:若選擇不同的條件分別解答,則按第一個解答計分(1)求數列的通項公式;(2)數列滿足,求數列的前項和22.(10分)已知雙曲線:的兩條漸近線所成的銳角為且點是上一點(1)求雙曲線的標準方程;(2)若過點的直線與交于,兩點,點能否為線段的中點?并說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據給定條件求出點P的坐標,再代入雙曲線方程計算作答.【詳解】由雙曲線對稱性不妨令點P在第一象限,過P作軸于B,如圖,因為等腰三角形,且頂角為,則有,,有,于是得,即點,因此,,解得,所以雙曲線C的離心率為.故選:A2、D【解析】代入計算即可.【詳解】設B點的坐標為,由拋物線方程得,則此時刻拱橋的最高點到水面的距離為2米.故選:D3、C【解析】由題設分析知的軌跡為(不與重合),要求的取值范圍,只需求出到圓上點的距離范圍即可.【詳解】由題設,在以為直徑的圓上,令,則(不與重合),所以的取值范圍,即為到圓上點的距離范圍,又圓心到的距離,圓的半徑為2,所以的取值范圍為,即.故選:C4、C【解析】根據正三角形的性質,結合拋物線的性質進行求解即可.【詳解】如圖所示:準線l與橫軸的交點為,由拋物線的性質可知:,因為若△MNF是邊長為2的正三角形,所以,,顯然,在直角三角形中,,故選:C5、B【解析】根據給定條件逐一分析各選項中的橢圓焦點即可判斷作答.【詳解】對于A,橢圓的焦點在x軸上,A不是;對于B,橢圓,即,焦點在y軸上,半焦距,其焦點為,B是;對于C,橢圓,即,焦點在y軸上,半焦距,其焦點為,C不是;對于D,橢圓,即,焦點在y軸上,半焦距,其焦點為,D不是.故選:B6、D【解析】根據復數的幾何意義即可確定復數所在象限【詳解】復數在復平面內對應的點為則復數在復平面內對應的點位于第四象限故選:D7、C【解析】根據定積分公式直接計算即可求得結果【詳解】由故選:C8、D【解析】利用不等式的性質分析判斷每個選項.【詳解】由不等式的性質可知,因為,所以,,故A錯誤,D正確;由,可得,,故B,C錯誤.故選:D9、C【解析】根據等差數列前項和公式進行求解即可.【詳解】,故選:C10、D【解析】首先求出函數的導函數,依題意可得,即可解得;【詳解】解:因為,所以又汽車在時的瞬時速度為12,即即,解得故選:D【點睛】本題考查導數在物理中的應用,屬于基礎題.11、A【解析】根據雙曲線的方程以及充分條件和必要條件的定義進行判斷即可【詳解】由,可知方程表示焦點在軸上的雙曲線;反之,若表示雙曲線,則,即,或,所以“,”是“方程表示雙曲線”的充分不必要條件故選:A12、A【解析】由已知,分別表示出選項對應的向量,然后利用平面向量共線定理進行判斷即可完成求解.【詳解】因,,,選項A,,,若A,B,D三點共線,則,即,解得,故該選項正確;選項B,,,若A,B,C三點共線,則,即,解得不存,故該選項錯誤;選項C,,,若B,C,D三點共線,則,即,解得不存在,故該選項錯誤;選項D,,,若A,C,D三點共線,則,即,解得不存在,故該選項錯誤;故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】構造法可得,由等比數列的定義寫出的通項公式,進而可得.【詳解】令,則,又,∴,故,而,∴是公比為,首項為,則,∴.故答案為:.14、【解析】根據圓的幾何性質,結合點到直線距離公式進行求解即可.【詳解】圓C:的半徑為3,圓心坐標為:設圓心到直線l:的距離為,要想圓C上恰有四個點到直線l的距離都等于1,只需,即,所以.故答案為:.15、【解析】在中求出,再在中求出,即可得到的齊次式,化簡即可求出離心率【詳解】設雙曲線:,,不妨設為雙曲線右支上一點因為線段的垂直平分線恰好經過點,且,所以,在中,,所以,,在中,,所以,,因此,,化簡得,,即,而,解得故答案為:16、【解析】將個數據寫出來,可得出這組數據的眾數.【詳解】這個數據分別為、、、、、、、、、、、、、、,該組數據的眾數為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用等差數列的基本量,結合已知條件,列出方程組,求得首項和公差,即可寫出通項公式;(2)根據(1)中所求,結合裂項求和法,即可求得.【小問1詳解】因為是等差數列,其n前項和為,已知,設其公差為,故可得:,,解得,又,故.【小問2詳解】由(1)知,,又,故.即.18、(1);(2)或.【解析】(1)根據給定條件求出數列的公差及首項即可計算作答.(2)由(1)求出,建立方程求解作答.【小問1詳解】設等差數列公差為,因,則,解得,于是得,所以數列的通項公式為:.【小問2詳解】由(1)知,,由得:,即,解得或,所以使成立的的值是或.19、(1);(2)點P在定直線x=9上.理由見解析.【解析】(1)設點,根據兩點坐標距離公式和等比數列的等比中項的應用列出方程,整理方程即可;(2)設直線MN方程為:,點,聯立雙曲線方程消去x得到關于y的一元二次方程,根據韋達定理寫出,利用兩點坐標和直線的點斜式方程寫出直線PA、PB,聯立方程組,解方程組即可.【小問1詳解】設點,則,又,所以,整理,得,即軌跡M的方程C為:;【小問2詳解】點P在定直線上.由(1)知,曲線C方程為:,直線MN過點D(1,0)若直線MN斜率不存在,則,得,不符合題意;設直線MN方程為:,點,則,消去x,得,有,,,,所以直線PA方程為:,直線PB方程為:,所以點P的坐標為方程組的解,有,即,整理,得,解得,即點P在定直線上.20、(1)(2)(3)【解析】(1)根據列舉法列出所有的可能基本事件,進而得出每個學生恰好拿到自己作業的概率;(2)利用對立事件的概念即可求得結果;(3)結合(1)即可得出每個學生拿的都不是自己作業的事件數.【小問1詳解】設這三個學生分別為A、B、C,A的作業為a,B的作業為b,C的作業為c,則基本事件為:,則基本事件總數為6,設每個學生恰好拿到自己作業為事件E,事件E包含的事件數為l,所以;小問2詳解】設每個學生不都拿到自己作業為事件F,因為事件F的對立事件為E,所以;【小問3詳解】設每個學生拿的都不是自己作業為事件G,事件G包含的事件數為2,.21、(1)條件選擇見解析,;(2).【解析】(1)選①,可得出,由可求得數列的通項公式;選②,分析可知數列是公差為的等差數列,根據已知條件求出的值,利用等差數列的求和公式可求得數列的通項公式;選③,在等式中令可求得的值,即可得出數列的通項公式;(2)求得,利用裂項相消法可求得.【小問1詳解】解:選①,因為,則,則,當時,,也滿足,所以,對任意的,;選②,因為,則數列是公差為的等差數列,所以,,解得,則;選③,對任意的,,則,可得,因此,.【小問2詳解】解:因為,因此,.22、(1);(2)點不能為線段的中點,理由見解析.【解析】(1)由漸近線夾角求得一個斜率,再代入點的坐標,然后可解得得雙曲線方程;(2)設直線方程為(斜率不存在時另說明

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論