




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省哈爾濱兆麟中學、阿城一中、尚志中學等六校2025屆高二數學第一學期期末達標檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知x是上的一個隨機的實數,則使x滿足的概率為()A. B.C. D.2.已知向量,,則下列向量中,使能構成空間的一個基底的向量是()A. B.C. D.3.設雙曲線:(,)的右頂點為,右焦點為,為雙曲線在第二象限上的點,直線交雙曲線于另一個點(為坐標原點),若直線平分線段,則雙曲線的離心率為()A. B.C. D.4.過點且與直線垂直的直線方程是()A. B.C. D.5.已知函數的圖象是下列四個圖象之一,且其導函數的圖象如圖所示,則該函數的圖象是()A. B.C. D.6.已知是空間的一個基底,若,,若,則()A B.C.3 D.7.函數f(x)=xex的單調增區間為()A.(-∞,-1) B.(-∞,e)C.(e,+∞) D.(-1,+∞)8.直線的一個法向量為()A. B.C. D.9.如圖,在三棱錐中,,二面角的正弦值是,則三棱錐外接球的表面積是()A. B.C. D.10.俗話說“好貨不便宜,便宜沒好貨”,依此判斷,“不便宜”是“好貨”的()A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件11.若實數x,y滿足不等式組,則的最小值為()A. B.0C. D.212.若方程表示焦點在y軸上的雙曲線,則k的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.萬眾矚目的北京冬奧會將于2022年2月4日正式開幕,繼2008年北京奧運會之后,國家體育場(又名鳥巢)將再次承辦奧運會開幕式.在手工課上,王老師帶領同學們一起制作了一個近似鳥巢的金屬模型,其俯視圖可近似看成是兩個大小不同、扁平程度相同的橢圓.已知大橢圓的長軸長為40cm,短軸長為20cm,小橢圓的短軸長為10cm,則小橢圓的長軸長為________cm.14.已知定義在R上的函數的導函數,且,則實數的取值范圍為__________.15.若兩條直線與互相垂直,則a的值為______.16.已知點為雙曲線,右支上一點,,為雙曲線的左、右焦點,點為線段上一點,的角平分線與線段交于點,且滿足,則________;若為線段的中點且,則雙曲線的離心率為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,四邊形為正方形,已知平面,且,E為中點(1)證明:平面;(2)證明:平面平面18.(12分)已知拋物線上一點到焦點的距離與到軸的距離相等.(1)求拋物線的方程;(2)若直線與拋物線交于A,兩點,且滿足(為坐標原點),證明:直線與軸的交點為定點.19.(12分)已知中,內角的對邊分別為,且滿足.(1)求的值;(2)若,求面積的最大值.20.(12分)在正方體中,,,分別是,,的中點.(1)證明:平面平面;(2)求直線與所成角的正切值.21.(12分)甲、乙等6個班級參加學校組織廣播操比賽,若采用抽簽的方式隨機確定各班級的出場順序(序號為1,2,…,6),求:(1)甲、乙兩班級的出場序號中至少有一個為奇數的概率;(2)甲、乙兩班級之間的演出班級(不含甲乙)個數X的分布列與期望22.(10分)圓錐曲線的方程是.(1)若表示焦點在軸上的橢圓,求的取值范圍;(2)若表示焦點在軸上且焦距為的雙曲線,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先解不等式得到的范圍,再利用幾何概型的概率公式進行求解.【詳解】由得,即,所以使x滿足的概率為故選:B.2、D【解析】根據向量共面基本定理只需無解即可滿足構成空間向量基底,據此檢驗各選項即可得解.【詳解】因為,所以A中的向量不能與,構成基底;因為,所以B中的向量不能與,構成基底;對于,設,則,解得,,所以,故,,為共面向量,所以C中的向量不能與,構成基底;對于,設,則,此方程組無解,所以,,不共面,故D中的向量與,可以構成基底.故選:D3、A【解析】由給定條件寫出點A,F坐標,設出點B的坐標,求出線段FC的中點坐標,由三點共線列式計算即得.【詳解】令雙曲線的半焦距為c,點,設,由雙曲線對稱性得,線段FC的中點,因直線平分線段,即點D,A,B共線,于是有,即,即,離心率.故選:A4、C【解析】根據兩直線垂直時斜率乘積為,可以直接求出所求直線的斜率,再根據點斜式求出直線方程,最后化成一般式方程即可.【詳解】因為直線的斜率為,故所求直線的斜率等于,所求直線的方程為,即,故選:C5、A【解析】利用導數與函數的單調性之間的關系及導數的幾何意義即得.【詳解】由函數f(x)的導函數y=f′(x)的圖像自左至右是先減后增,可知函數y=f(x)圖像的切線的斜率自左至右先減小后增大,且,在處的切線的斜率為0,故BCD錯誤,A正確.故選:A.6、C【解析】由,可得存在實數,使,然后將代入化簡可求得結果【詳解】,,因為,所以存在實數,使,所以,所以,所以,得,,所以,故選:C7、D【解析】求出,令可得答案.【詳解】由已知得,令,得,故函數f(x)=xex的單調增區間為(-1,+∞).故選:D.8、B【解析】直線化為,求出直線的方向向量,因為法向量與方向向量垂直,逐項驗證可得答案.【詳解】直線的方向向量為,化為,直線的方向向量為,因為法向量與方向向量垂直,設法向量為,所以,由于,A錯誤;,故B正確;,故C錯誤;,故D錯誤;故選:B.9、A【解析】利用二面角S﹣AC﹣B的余弦值求得,由此判斷出,且兩兩垂直,由此將三棱錐補形成正方體,利用正方體的外接球半徑,求得外接球的表面積.【詳解】設是的中點,連接,由于,所以,所以是二面角的平面角,所以.在三角形中,,在三角形中,,在三角形中,由余弦定理得:,所以,由于,所以兩兩垂直.由此將三棱錐補形成正方體如下圖所示,正方體的邊長為2,則體對角線長為.設正方體外接球的半徑為,則,所以外接球的表面積為,故選:.10、A【解析】將“好貨”與“不便宜”進行相互推理即可求得答案.【詳解】根據題意,“好貨”一定“不便宜”,但是“不便宜”不一定是“好貨”,所以“不便宜”是“好貨”的必要不充分條件.故選:A.11、A【解析】畫出可行域,令,則,結合圖形求出最小值,即可得解;【詳解】解:畫出不等式組,表示的平面區域如圖陰影部分所示,由,解得,即,令,則.結合圖形可知當過點時,取得最小值,且,即故選:A12、B【解析】由條件可得,即可得到答案.【詳解】方程表示焦點在y軸上的雙曲線所以,即故選:B二、填空題:本題共4小題,每小題5分,共20分。13、20【解析】求出大橢圓的離心率等于小橢圓的離心率,然后求解小橢圓的長軸長【詳解】在大橢圓中,,,則,.因為兩橢圓扁平程度相同,所以離心率相等,所以在小橢圓中,,結合,得,所以小橢圓的長軸長為20.故填:20.【點睛】本題考查橢圓的簡單性質的應用,對橢圓相似則離心率相等這一基礎知識的考查14、【解析】由題意可得在R上單調遞增,再由,利用函數的單調性轉化為關于的不等式求解【詳解】定義在R上的函數的導函數,在R上單調遞增,由,得,即實數的取值范圍為故答案為:15、4【解析】兩直線斜率均存在時,兩直線垂直,斜率相乘等于-1,據此即可求解.【詳解】由題可知,.故答案為:4.16、①.②.【解析】過作,交于點,作,交于點,由向量共線定理可得;再由角平分線性質定理和雙曲線的定義、結合余弦定理和離心率公式,可得所求值【詳解】解:過作交于點,作交于點,由,得,由角平分線定理;因為為的中點,所以,由雙曲線的定義,,所以,,,在中,由余弦定理,所以.故答案為:;.【點睛】本題考查雙曲線的定義、方程和性質,以及角平分線的性質定理和余弦定理的運用,考查方程思想和運算能力,屬于中檔題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】(1)設與交于點,連結,易證,再利用線面平行的判斷定理即可證得答案;(2)利用線面垂直的判定定理可得平面,再由面面垂直的判斷定理即可.【小問1詳解】連接交于,連接因為底面是正方形,所以為中點,因為在中,是的中點,所以,因為平面平面,所以平面【小問2詳解】側棱底面底面,所以,因為底面是正方形,所以,因為與為平面內兩條相交直線,所以平面,因為平面,所以平面平面.18、(1);(2)證明見解析.【解析】(1)利用拋物線點,n)到焦點的距離等于到x軸的距離求出,從而得到拋物線的標準方程(2)聯立直線與拋物線方程,通過韋達定理求出直線方程,然后由,即可求解【小問1詳解】由題意可得,故拋物線方程為;【小問2詳解】設,,,,直線的方程為,聯立方程中,消去得,,則,又,解得或(舍去),直線方程為,直線過定點19、(1)2;(2).【解析】(1)利用正弦定理以及逆用兩角和的正弦公式得出,而,即可求出的值;(2)根據題意,由余弦定理得,再根據基本不等式求得,當且僅當時取得等號,即可求出面積的最大值.【小問1詳解】解:由題意得,由正弦定理得:,即,即,因為,所以【小問2詳解】解:由余弦定理,即,由基本不等式得:,即,當且僅當時取得等號,,所以面積的最大值為20、(1)證明見解析(2)【解析】(1)分別證明∥平面,∥平面,最后利用面面平行的判定定理證明平面∥平面即可;(2)由∥得即為直線與所成角,在直角△即可求解.【小問1詳解】∵∥且EN平面MNE,BC平面MNE,∴BC∥平面MNE,又∵∥且EM平面MNE,平面MNE,∴∥平面MNE又∵,∴平面∥平面,【小問2詳解】由(1)得∥,∴為直線MN與所成的角,設正方體的棱長為a,在△中,,,∴.21、(1)(2)X01234p期望為.【解析】(1)求出甲、乙兩班級的出場序號中均為偶數的概率,進而求出答案;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業園區環境風險防控體系建設
- 工業大數據在智能制造中的價值
- 工業安全與智能防控技術
- 工業安全防護技術與措施
- 工業用特種機械設備的技術與應用分析
- 工業自動化中機器視覺的檢測精度提升
- 工業機器人技術的安全與防護措施
- 工業綠色化改造與可持續發展路徑
- 工業節能與綠色生產的研究進展
- 工業自動化中的電氣傳動與控制
- 天耀中華合唱簡譜大劇院版
- 戴爾電腦培訓課件
- YSJ 007-1990 有色金屬選礦廠 試驗室、化驗室及技術檢查站工藝設計標準(試行)(附條文說明)
- (完整版)學生課堂學習自我評價表
- 麗聲英語百科分級讀物第一級Legs課件
- 義務教育《化學》課程標準(2022年版)
- 新通用大學英語綜合教程2(第2冊)U3課后答案及課件(第三單元unit03)高等教育出版社
- 暑假托管班課程表
- 梁俊嬌稅收籌劃課后思考題
- DTLDTC帶式輸送機工藝流程圖
- 五年級下冊語文第七單元復習(人物描寫復習)(課堂PPT)
評論
0/150
提交評論