




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海中學、復旦附中等八校2025屆數學高二上期末學業質量監測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.橢圓的長軸長是()A.3 B.6C.9 D.42.已知等比數列的前n項和為,若,,則()A.250 B.210C.160 D.903.在一次體檢中,發現甲、乙兩個單位的職工中體重超過的人員的體重如下(單位:).若規定超過為顯著超重,從甲、乙兩個單位中體重超過的職工中各抽取1人,則這2人中,恰好有1人顯著超重的概率為()A. B.C. D.4.函數的圖像在點處的切線方程為()A. B.C. D.5.下列語句為命題的是()A. B.你們好!C.下雨了嗎? D.對頂角相等6.阿基米德(公元前287年~公元前212年)不僅是著名的物理學家,也是著名的數學家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的對稱軸為坐標軸,焦點在軸上,且橢圓的離心率為,面積為,則橢圓的標準方程為()A. B.C. D.7.若直線a不平行于平面,則下列結論正確的是()A.內的所有直線均與直線a異面 B.直線a與平面有公共點C.內不存在與a平行的直線 D.內的直線均與a相交8.拋物線準線方程為()A. B.C. D.9.如圖,過拋物線的焦點的直線交拋物線于點,,交其準線于點,準線與對稱軸交于點,若,且,則此拋物線的方程為()A. B.C. D.10.如圖,在四面體中,,,,D為BC的中點,E為AD的中點,則可用向量,,表示為()A. B.C. D.11.南宋數學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數列與一般等差數列不同,前后兩項之差并不相等,而是逐項差數之差或者高次差相等.對這類高階等差數列的研究,在楊輝之后一般稱為“垛積術”.現有一個高階等差數列,其前7項分別為1,5,11,21,37,61,95,則該數列的第8項為()A.99 B.131C.139 D.14112.已知四棱柱ABCD-A1B1C1D1的底面是邊長為2的正方形,側棱與底面垂直,若點C到平面AB1D1的距離為,則直線與平面所成角的余弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,按照以下規律排列的數陣中,第i行從左向右第j個數記為,如,,則______;令則______14.已知函數有零點,則的取值范圍是___________.15.已知等差數列的公差為1,且是和的等比中項,則前10項的和為___________.16.已知數列滿足,,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列的前n項和為,且.(1)求的通項公式;.(2)求數列的前n項和.18.(12分)有時候一些東西吃起來口味越好,對我們的身體越有害.下表給出了不同品牌的一些食品所含熱量的百分比記為和一些美食家以百分制給出的對此種食品口味的評價分數記為:食品品牌12345678910所含熱量的百分比25342019262019241914百分制口味評價分數88898078757165626052參考數據:,,,參考公式:,(1)已知這些品牌食品的所含熱量的百分比與美食家以百分制給出的對此種食品口味的評價分數具有相關關系.試求出回歸方程(最后結果精確到);(2)某人只能接受食品所含熱量百分比為及以下的食品.現在他想從這些食品中隨機選取兩種購買,求他所選取的兩種食品至少有一種是美食家以百分制給出的對此種食品口味的評價分數為分以上的概率.19.(12分)已知圓心為的圓過原點,且直線與圓相切于點.(1)求圓的方程;(2)已知過點的直線的斜率為,且直線與圓相交于兩點.①若,求弦的長;②若圓上存在點,使得成立,求直線的斜率.20.(12分)已知二次函數,令,解得.(1)求二次函數的解析式;(2)當關于的不等式恒成立時,求實數的范圍.21.(12分)已知橢圓:的離心率為,且經過點.(1)求的方程;(2)設的右焦點為F,過F作兩條互相垂直的直線AB和DE,其中A,B,D,E都在橢圓上,求的取值范圍.22.(10分)如圖,在直三棱柱中,,,,為的中點,點,分別在棱,上,,.(1)求點到直線的距離(2)求平面與平面夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據橢圓方程有,即可確定長軸長.【詳解】由橢圓方程知:,故長軸長為6.故選:B2、B【解析】設為等比數列,由此利用等比數列的前項和為能求出結果【詳解】設,等比數列的前項和為為等比數列,為等比數列,解得故選:B3、B【解析】列舉出所有選取的情況,再找出滿足題意的情況,根據古典概型的概率計算公式即可求解.【詳解】不妨用表示每種抽取情況,其中是指甲單位抽取1人的體重,代表從乙單位抽取人的體重.則所有的可能有16種,如下所示:,,,,,,,,,,,,,,,其中滿足題意的有6種:,,,,,故抽取的這2人中,恰好有1人顯著超重的概率為:.故選:.4、B【解析】求得函數的導數,計算出和的值,可得出所求切線的點斜式方程,化簡即可.詳解】,,,,因此,所求切線的方程為,即.故選:B.【點睛】本題考查利用導數求解函圖象的切線方程,考查計算能力,屬于基礎題5、D【解析】根據命題的定義判斷即可.【詳解】因為能夠判斷真假的語句叫作命題,所以ABC錯誤,D正確.故選:D6、C【解析】由題意,設出橢圓的標準方程為,然后根據橢圓的離心率以及橢圓面積列出關于的方程組,求解方程組即可得答案【詳解】由題意,設橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.7、B【解析】根據題意可得直線a與平面相交或在平面內,結合線面的位置關系依次判斷選項即可.【詳解】若直線a不平行與平面,則直線a與平面相交或在平面內.A:內的所有直線均與直線a異面錯誤,也可能相交,故A錯誤;B:直線a與平面相交或直線a在平面內都有公共點,故B正確;C:平面內不存在與a平行的直線,錯誤,當直線a在平面內就存在與a平行的直線,故C錯誤;D:平面內的直線均與a相交,錯誤,也可能異面,故D錯誤.故選:B8、D【解析】由拋物線的準線方程即可求解【詳解】由拋物線方程得:.所以,拋物線的準線方程為故選D【點睛】本題主要考查了拋物線的準線方程,屬于基礎題9、B【解析】根據拋物線定義,結合三角形相似以及已知條件,求得,則問題得解.【詳解】根據題意,過作垂直于準線,垂足為,過作垂直于準線,垂足為,如下所示:因為,又//,,則,故可得,又△△,則,即,解得,故拋物線方程為:.故選:.10、B【解析】利用空間向量的基本定理,用,,表示向量【詳解】因為是的中點,是的中點,,故選:B11、D【解析】根據題中所給高階等差數列定義,找出其一般規律即可求解.【詳解】設該高階等差數列的第8項為,根據所給定義,用數列的后一項減去前一項得到一個數列,得到的數列也用后一項減去前一項得到一個數列,即得到了一個等差數列,如圖:由圖可得,則.故選:D12、A【解析】先由等面積法求得的長,再以為坐標原點,建立如圖所示的空間直角坐標系,運用線面角的向量求解方法可得答案【詳解】如圖,連接交于點,過點作于,則平面,則,設,則,則根據三角形面積得,代入解得以為坐標原點,建立如圖所示的空間直角坐標系則,,設平面的法向量為,,,則,即,令,得,所以直線與平面所成的角的余弦值為,故選:二、填空題:本題共4小題,每小題5分,共20分。13、①.55②.【解析】令易知是首項為,公差為1的等差數列,寫出通項公式,再應用累加法求及通項公式,結合求通項公式,進而可得,最后兩次應用錯位相減法求即可.【詳解】由題設知:令,則是首項為,公差為1的等差數列,故,所以,即,由上可得:,則,而,所以,則,所以,,所以,令,則,所以,故,綜上,,則.故答案為:,.【點睛】關鍵點點睛:通過圖總結規律,易知是等差數列,應用累加法求,再由求通項公式,最后應用錯位相減法求前n項和.14、【解析】利用導數可求得函數的最小值,要使函數有零點,只要,求得函數的最小值,即可得解.【詳解】解:,當時,,當時,,所以在上遞減,在上遞增,所以,因為函數有零點,所以,解得.故答案為:.15、【解析】利用等比中項及等差數列通項公式求出首項,再利用等差數列的前項和公式求出前10項的和.【詳解】設等差數列的首項為,由已知條件得,即,,解得,則.故答案為:.16、1023【解析】由數列遞推公式求特定項,依次求下去即可解決.【詳解】數列中,則,,,,,,故答案為:1023三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據給定條件結合當時,探求數列的性質即可計算作答.(2)由(1)求出,再利用錯位相減法計算作答.小問1詳解】依題意,當時,因為,則,當時,,解得,于是得數列是以1為首項,為公比的等比數列,則,所以的通項公式是.【小問2詳解】由(1)可知,,則,因此,兩式相減得:,于是得,所以數列的前n項和.18、(1)(2)【解析】(1)首先求出、、,即可求出,從而求出回歸直線方程;(2)由表可知某人只能接受的食品共有種,評價為分以上的有種可記為,,另外種記為,,,,用列舉法列出所有的可能結果,再根據古典概型的概率公式計算可得;【小問1詳解】解:設所求的回歸方程為,由,,,,所求的回歸方程為:.【小問2詳解】解:由表可知某人只能接受的食品共有種,其中美食家以百分制給出的對此種食品口味的評價為分以上的有種可記為,,另外種記為,,,.任選兩種分別為:,,,,,,,,,,,,,,,共15個基本事件.記“所選取的兩種食品至少有一種是美食家以百分制給出的對此食品口味的評價分數為分以上”為事件,則事件包含,,,,,,,,共個基本事件,故事件發生的概率為.19、(1);(2)①,②.【解析】(1)圓心在線段的垂直平分線上,圓心也在過點且與垂直的直線上,聯立求圓心,進而得半徑即可;(2)①垂徑定理即可求弦長;②圓上存在點,使得成立,即四邊形是平行四邊形,又,有都是等邊三角形,進而得圓心到直線的距離為,列方程求解即可.試題解析:(1)由已知得,圓心在線段的垂直平分線上,圓心也在過點且與垂直的直線上,由得圓心,所以半徑,所以圓的方程為;(2)①由題意知,直線的方程為,即,∴圓心到直線的距離為,∴;②∵圓上存在點,使得成立,∴四邊形是平行四邊形,又,∴都是等邊三角形,∴圓心到直線的距離為,又直線的方程為,即,∴,解得.20、(1);(2).【解析】(1)利用一元二次不等式的解集是,得到-3,2是方程的兩個根,根據根與系數之間的關系,即可求,;(2)根據題意,得出不等式恒成立,則,解不等式即可求出實數的范圍.詳解】解:(1)由題可知,,解得:,則-3,2是方程的兩個根,且,所以由根與系數之間的關系得,解得,所以二次函數的解析式為:;(2)由于不等式恒成立,即恒成立,則,解得:,所以實數的范圍為.【點睛】本題考查由一元二次不等式的解集求函數解析式,以及不等式恒成立問題求參數范圍,考查根與系數的關系和一元二次函數的圖象和性質,考查化簡運算能力21、(1)(2)【解析】(1)根據橢圓的離心率為,及經過點建立等式可求解;(2)分斜率存在與不存在兩種情況進行討論,當斜率存在時,計算與后再求范圍即可.【小問1詳解】由題意知的離心率為,整理得,又因為經過點,所以,解得,所以,因此,的方程為.小問2詳解】由已知可得,當直線AB或DE有一條的斜率不存在時,可得,或,,此時有或.當AB和DE的斜率都存在時且不為0時,設直線:,直線:,,,,由得,所以,,所以,用替換可得.所以,綜上所述,的取值范圍為.22、(1);
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 期末應用題專項訓練:混合運算(含解析)-2024-2025學年數學二年級下冊人教版
- 部編版一年級下冊第六單元《荷葉圓圓》教案
- 建筑施工特種作業-建筑起重機械司機(塔式起重機)真題庫-3
- 建筑施工特種作業-建筑起重機械安裝拆卸工(施工升降機)真題庫-1
- 建筑施工特種作業-建筑電工真題庫-10
- 2025年湖南省中考地理試卷真題(含答案)
- 賽馬題目及答案大全圖片
- 乳腺外科出科題目及答案
- 日語選擇題目及答案
- 7 1 空間幾何體的結構特征 表面積和體積-2026版53高考數學總復習A版精煉
- DB11∕T 2000-2022 建筑工程消防施工質量驗收規范
- 部編 人教版四年級語文下冊全冊課內閱讀理解練習(含答案)
- 工程建設管理工作報告
- 攪拌站環境管理制度
- 江蘇省蘇州市相城區2024年五年級數學第二學期期末調研試題含解析
- 礦山企業會議管理制度
- 人教版七年級下冊英語單詞變形
- 廣東中山市2023-2024學年三年級數學第二學期期末學業水平測試試題含解析
- (高清版)AQ 1056-2008 煤礦通風能力核定標準
- 《學前兒童健康教育》6-2學前兒童安全教育的目標和內容課件
- 《建筑施工塔式起重機安裝、使用、拆卸安全技術規程》(JGJ196-2010)
評論
0/150
提交評論