2025屆吉林省公主嶺市數學高二上期末經典模擬試題含解析_第1頁
2025屆吉林省公主嶺市數學高二上期末經典模擬試題含解析_第2頁
2025屆吉林省公主嶺市數學高二上期末經典模擬試題含解析_第3頁
2025屆吉林省公主嶺市數學高二上期末經典模擬試題含解析_第4頁
2025屆吉林省公主嶺市數學高二上期末經典模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆吉林省公主嶺市數學高二上期末經典模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定義在上的函數的導函數為,且恒有,則下列不等式一定成立的是()A. B.C. D.2.“楊輝三角”是中國古代重要的數學成就,它比西方的“帕斯卡三角形”早了300多年,如圖是由“楊輝三角”拓展而成的三角形數陣,記為圖中虛線上的數1,3,6,10,…構成的數列的第n項,則的值為()A.1225 B.1275C.1326 D.13623.某學校高一、高二、高三年級的學生人數之比為3∶3∶4,現用分層抽樣的方法從該校高中學生中抽取容量為50的樣本,則應從高三年級抽取的學生數為()A.10 B.15C.20 D.304.設是兩個不同的平面,是一條直線,以下命題正確的是A.若,則 B.若,則C.若,則 D.若,則5.在平面直角坐標系xOy中,點(0,4)關于直線x-y+1=0的對稱點為()A.(-1,2) B.(2,-1)C.(1,3) D.(3,1)6.若用面積為48的矩形ABCD截某圓錐得到一個橢圓,且該橢圓與矩形ABCD的四邊都相切.設橢圓的方程為,則下列滿足題意的方程為()A. B.C. D.7.已知,是雙曲線C:(,)的兩個焦點,過點與x軸垂直的直線與雙曲線C交于A、B兩點,若是等腰直角三角形,則雙曲線C的離心率為()A. B.C. D.8.下列事件:①連續兩次拋擲同一個骰子,兩次都出現2點;②某人買彩票中獎;③從集合中任取兩個不同元素,它們的和大于2;④在標準大氣壓下,水加熱到90℃時會沸騰.其中是隨機事件的個數是()A.1 B.2C.3 D.49.若直線l的傾斜角是鈍角,則l的方程可能是()A. B.C. D.10.已知數列是以1為首項,2為公差的等差數列,是以1為首項,2為公比的等比數列,設,,則當時,n的最大值是()A.8 B.9C.10 D.1111.等比數列的各項均為正數,已知向量,,且,則A.12 B.10C.5 D.12.如圖,矩形BDEF所在平面與正方形ABCD所在平面互相垂直,,,點P在線段EF上.給出下列命題:①存在點P,使得直線平面ACF;②存在點P,使得直線平面ACF;③直線DP與平面ABCD所成角的正弦值的取值范圍是;④三棱錐的外接球被平面ACF所截得的截面面積是.其中所有真命題的序號()A.①③ B.①④C.①②④ D.①③④二、填空題:本題共4小題,每小題5分,共20分。13.數列的前項和為,則該數列的通項公式___________14.已知5件產品中有2件次品、3件合格品,從這5件產品中任取2件,求2件都是合格品的概率_______.15.點P是棱長為1的正方體ABCD﹣A1B1C1D1的底面A1B1C1D1上一點,則的取值范圍是__.16.已知數列滿足,,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知命題:“,”,命題:“,”,若“且”為真命題,求實數的取值范圍18.(12分)設函數(1)若,求函數的單調區間;(2)若函數有兩個不同的零點,求實數的取值范圍19.(12分)已知橢圓:,的左右焦點,是雙曲線的左右頂點,的離心率為,的離心率為,點在上,過點E和,分別作直線交橢圓于,和,點,如圖.(1)求,的方程;(2)求證:直線和的斜率之積為定值;(3)求證:為定值.20.(12分)已知橢圓的離心率為,直線與橢圓C相切于點(1)求橢圓C方程;(2)已知直線與橢圓C交于不同的兩點M,N,與直線交于點Q(P,Q,M,N均不重合),記的斜率分別為,若①求△面積的范圍,②證明:為定值21.(12分)如圖,在正四棱錐中,為底面中心,,為中點,(1)求證:平面;(2)求:(?。┲本€到平面的距離;(ⅱ)求直線與平面所成角的正弦值22.(10分)在棱長為的正方體中,、分別為線段、的中點.(1)求平面與平面所成銳二面角的余弦值;(2)求直線到平面的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】構造函數,用導數判斷函數單調性,即可求解.【詳解】根據題意,令,其中,則,∵,∴,∴在上為單調遞減函數,∴,即,,則錯誤;,即,則錯誤;,即,則錯誤;,即,則正確;故選:.2、B【解析】觀察前4項可得,從而可求得結果【詳解】由題意可得,……,觀察規律可得,所以,故選:B3、C【解析】根據抽取比例乘以即可求解.【詳解】由題意可得應從高三年級抽取的學生數為,故選:C.4、C【解析】對于A、B、D均可能出現,而對于C是正確的5、D【解析】設出點(0,4)關于直線的對稱點的坐標,根據題意列出方程組,解方程組即可【詳解】解:設點(0,4)關于直線x-y+1=0的對稱點是(a,b),則,解得:,故選:D6、A【解析】由橢圓與矩形ABCD的四邊都相切得到再逐項判斷即可.【詳解】由于橢圓與矩形ABCD的四邊都相切,所以矩形兩邊長分別為,由矩形面積為48,得,對于選項B,D由于,不符合條件,不正確.對于選項A,,滿足題意.對于選項C,不正確.故選:A.7、B【解析】根據等腰直角三角形的性質,結合雙曲線的離心率公式進行求解即可.【詳解】由題意不妨設,,當時,由,不妨設,因為是等腰直角三角形,所以有,或舍去,故選:B8、B【解析】因為隨機事件指的是在一定條件下,可能發生,也可能不發生的事件,只需逐一判斷4個事件哪一個符合這種情況即可【詳解】解:連續兩次拋擲同一個骰子,兩次都出現2點這一事件可能發生也可能不發生,①是隨機事件某人買彩票中獎這一事件可能發生也可能不發生,②是隨機事件從集合,2,中任取兩個元素,它們的和必大于2,③是必然事件在標準大氣壓下,水加熱到時才會沸騰,④是不可能事件故隨機事件有2個,故選:B9、A【解析】根據直線方程,求得直線斜率,再根據傾斜角和斜率的關系,即可判斷和選擇.【詳解】若直線的傾斜角為,則,當時,為鈍角,當,,當,為銳角;當不存在時,傾斜角為,對A:,顯然傾斜角為鈍角;對B:,傾斜角為銳角;對C:,傾斜角為銳角;對D:不存在,此時傾斜角為直角.故選:A.10、B【解析】先求出數列和的通項公式,然后利用分組求和求出,再對進行賦值即可求解.【詳解】解:因為數列是以1為首項,2為公差的等差數列所以因為是以1為首項,2為公比的等比數列所以由得:當時,即當時,當時,所以n的最大值是.故選:B.【點睛】關鍵點睛:本題的關鍵是利用分組求和求出,再通過賦值法即可求出使不等式成立的的最大值.11、C【解析】利用數量積運算性質、等比數列的性質及其對數運算性質即可得出【詳解】向量=(,),=(,),且?=4,∴+=4,由等比數列的性質可得:=……===2,則log2(?)=故選C【點睛】本題考查數量積運算性質、等比數列的性質及其對數運算性質,考查推理能力與計算能力,屬于中檔題12、D【解析】當點P是線段EF中點時判斷①;假定存在點P,使得直線平面ACF,推理導出矛盾判斷②;利用線面角的定義轉化列式計算判斷③;求出外接圓面積判斷④作答.【詳解】取EF中點G,連DG,令,連FO,如圖,在正方形ABCD中,O為BD中點,而BDEF是矩形,則且,即四邊形DGFO是平行四邊形,即有,而平面ACF,平面ACF,于是得平面ACF,當點P與G重合時,直線平面ACF,①正確;假定存在點P,使得直線平面ACF,而平面ACF,則,又,從而有,在中,,DG是直角邊EF上中線,顯然在線段EF上不存在點與D連線垂直于DG,因此,假設是錯的,即②不正確;因平面平面,平面平面,則線段EF上的動點P在平面上的射影在直線BD上,于是得是直線DP與平面ABCD所成角的,在矩形BDEF中,當P與E不重合時,,,而,則,當P與E重合時,,,因此,,③正確;因平面平面,平面平面,,平面,則平面,,在中,,顯然有,,由正弦定理得外接圓直徑,,三棱錐的外接球被平面ACF所截得的截面是的外接圓,其面積為,④正確,所以所給命題中正確命題的序號是①③④.故選:D【點睛】結論點睛:兩個平面互相垂直,則一個平面內任意一點在另一個平面上的射影都在這兩個平面的交線上.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據與關系求解即可.【詳解】當時,,當時,,檢驗:,所以.故答案為:14、##【解析】列舉總的基本事件及滿足題目要求的基本事件,然后用古典概型的概率公式求解即可.【詳解】設5件產品中的次品為,合格品為,則從這5件產品中任取2件,有共10個基本事件,其中2件都是合格品的有共3個基本事件,故2件都是合格品的概率為故答案為:.15、[﹣,0]【解析】建立空間直角坐標系,設出點P的坐標為(x,y,z),則由題意可得0≤x≤1,0≤y≤1,z=1,計算?x2﹣x,利用二次函數的性質求得它的值域即可【詳解】解:以點D為原點,以DA所在的直線為x軸,以DC所在的直線為y軸,以DD1所在的直線為z軸,建立空間直角坐標系,如圖所示;則點A(1,0,0),C1(0,1,1),設點P的坐標為(x,y,z),由題意可得0≤x≤1,0≤y≤1,z=1;∴(1﹣x,﹣y,﹣1),(﹣x,1﹣y,0),∴?x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y,由二次函數的性質可得,當x=y時,?取得最小值為;當x=0或1,且y=0或1時,?取得最大值為0,則?的取值范圍是[,0]故答案為:[,0]【點睛】本題主要考查了向量在幾何中的應用與向量的數量積運算問題,是綜合性題目16、【解析】由已知可知即數列是首項為1,公差為1的等差數列,進而可求得數列的通項公式,即可求.【詳解】由題意知:,即,而,∴數列是首項為1,公差為1的等差數列,有,∴,則.故答案為:【點睛】關鍵點點睛:由遞推關系求數列的通項,進而得到的通項公式寫出項.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、或【解析】先分別求出,為真時,的范圍;再求交集,即可得出結果.【詳解】若是真命題.則對任意恒成立,∴;若為真命題,則方程有實根,∴,解得或,由題意,真也真,∴或即實數的取值范圍是或.18、(1)的單調遞減區間為,單調遞增區間為;(2).【解析】(1)求出,進而判斷函數的單調性,然后討論符號后可得函數的單調區間;(2)令,則有兩個不同的零點,利用導數討論的單調性并結合零點存在定理可得實數的取值范圍.【小問1詳解】當時,,,記,則,所以在上單調遞增,又,所以當時,;當時,,所以單調遞減區間為,單調遞增區間為【小問2詳解】令,得,記,則,令得,列表得.x0↘極小值↗要使在上有兩個零點,則,所以且函數在和上各有一個零點當時,,,,則,故上無零點,與函數在上有一個零點矛盾,故不滿足條件所以,又因為,所以考慮,設,,則,則在上單調遞減,故當時,,所以,且,因為,所以,由零點存在定理知在和上各有一個零點綜上可知,實數a的取值范圍為【點睛】方法點睛:利用導數研究零點問題:(1)確定零點的個數問題:可利用數形結合的辦法判斷交點個數,如果函數較為復雜,可用導數知識確定極值點和單調區間從而確定其大致圖象;(2)方程的有解問題就是判斷是否存在零點的問題,可參變分離,轉化為求函數的值域問題處理.可以通過構造函數的方法,把問題轉化為研究構造的函數的零點問題;(3)利用導數硏究函數零點或方程根,通常有三種思路:①利用最值或極值研究;②利用數形結合思想研究;③構造輔助函數硏究.19、(1):;:(2)證明見解析(3)證明見解析【解析】(1)利用待定系數法,根據條件先求曲線的方程,再求曲線的方程;(2)首先設,表示直線和的斜率之積,即可求解定值;(3)首先表示直線與方程聯立消,利用韋達定理表示弦長,以及利用直線和的斜率關系,表示弦長,并證明為定值.【小問1詳解】由題設知,橢圓離心率為解得∴,∵橢圓的左右焦點,是雙曲線的左右頂點,∴設雙曲線:∴的離心率為解得.∴::;【小問2詳解】證明:∵點在上∴設則,∴.∴直線和的斜率之積為定值1;【小問3詳解】證明:設直線和的斜率分別為,,則設,:與方程聯立消得“*”則,是“*”的二根則則同理∴.20、(1);(2)①;②證明見解析.【解析】(1)根據橢圓離心率和橢圓經過的點建立方程組,求解方程組可得橢圓的方程;(2)先根據相切求出直線的斜率,結合可得,進而應用弦長公式、點線距離公式及三角形面積公式求△面積的范圍,再逐個求解,,然后可證結論.【小問1詳解】由題意,解得,故橢圓C的方程為.【小問2詳解】設直線為,聯立得:,因為直線與橢圓C相切,則判別式,即,整理得,∴,故直線為,又,可得,設直線為,聯立方程組,解得,故Q為,聯立方程組,化簡得設,由得:,且,①,到直線的距離為,∴,令,∴.②由上,故

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論