




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
宿州市重點中學2025屆高二上數學期末學業(yè)水平測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數在(0,e]上的最大值為()A.-1 B.1C.0 D.e2.已知雙曲線的離心率為5,則其標準方程為()A. B.C. D.3.如圖,是水平放置的的直觀圖,其中,,分別與軸,軸平行,則()A.2 B.C.4 D.4.數列是公差不為零的等差數列,為其前n項和.若對任意的,都有,則的值不可能是()A. B.2C. D.35.雙曲線的焦點坐標是()A. B.C. D.6.觀察下列各式:,,,,,可以得出的一般結論是A.B.C.D.7.在數列中,,,則()A. B.C. D.8.已知不等式的解集為,關于x的不等式的解集為B,且,則實數a的取值范圍為()A. B.C. D.9.若直線與曲線只有一個公共點,則m的取值范圍是()A. B.C.或 D.或10.已知x>0、y>0,且1,若恒成立,則實數m的取值范圍為()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)11.圓錐曲線具有豐富的光學性質,從橢圓的一個焦點發(fā)出的光線,經過橢圓反射后,反射光線經過橢圓的另一個焦點.直線l:與橢圓C:相切于點P,橢圓C的焦點為,,由光學性質知直線,與l的夾角相等,則的角平分線所在的直線的方程為()A. B.C. D.12.三棱錐D-ABC中,AC=BD,且異面直線AC與BD所成角為60°,E、F分別是棱DC、AB的中點,則EF和AC所成的角等于()A.30° B.30°或60°C.60° D.120°二、填空題:本題共4小題,每小題5分,共20分。13.過拋物線的焦點作傾斜角為的直線,與拋物線分別交于兩點(點在軸上方),_________14.若函數解析式,則使得成立的的取值范圍是___________.15.已知拋物線C:的焦點F到準線的距離為4,過點F和的直線l與拋物線C交于P,Q兩點.若,則________.16.設圓,圓,則圓有公切線___________條.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,其圓心在直線上.(1)求的值;(2)若過點的直線與相切,求的方程.18.(12分)已知首項為1的數列滿足.(1)求數列的通項公式;(2)記,求數列的前n項和.19.(12分)已知點F是拋物線和橢圓的公共焦點,是與的交點,.(1)求橢圓的方程;(2)直線與拋物線相切于點,與橢圓交于,,點關于軸的對稱點為.求的最大值及相應的.20.(12分)已知是橢圓的兩個焦點,P為C上一點,O為坐標原點(1)若為等邊三角形,求C的離心率;(2)如果存在點P,使得,且的面積等于16,求b的值和a的取值范圍.21.(12分)已知等差數列滿足,.(1)求的通項公式;(2)設,求數列的前項和.22.(10分)若存在實常數k和b,使得函數和對其公共定義域上的任意實數x都滿足:和恒成立,則稱此直線y=kx+b為和的“隔離直線”.已知函數,.(1)證明函數在內單調遞增;(2)證明和之間存在“隔離直線”,且b的最小值為-4.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】對函數求導,然后求出函數的單調區(qū)間,從而可求出函數的最大值【詳解】由,得,當時,,當,,所以在上單調遞增,在上單調遞減,所以當時,取得最大值,故選:A2、D【解析】雙曲線離心率公式和a、b、c的關系即可求得m,從而得到雙曲線的標準方程.【詳解】∵雙曲線,∴,又,∴,∵離心率為,∴,解得,∴雙曲線方程.故選:D.3、D【解析】先確定是等腰直角三角形,求出,再確定原圖的形狀,進而求出.【詳解】由題意可知是等腰直角三角形,,其原圖形是,,,,則,故選:D.4、A【解析】由已知建立不等式組,可求得,再對各選項逐一驗證可得選項.【詳解】解:因為數列是公差不為零的等差數列,為其前n項和.對任意的,都有,所以,即,解得,則當時,,不成立;當時,,成立;當時,,成立;當時,,成立;所以的值不可能是,故選:A.5、B【解析】根據雙曲線的方程,求得,結合雙曲線的幾何性質,即可求解.【詳解】由題意,雙曲線,可得,所以,且雙曲線的焦點再軸上,所以雙曲線的焦點坐標為.故選:B.6、C【解析】1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以歸納:左邊每一個式子均有2n-1項,且第一項為n,則最后一項為3n-2右邊均為2n-1的平方故選C點睛:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現某些相同性質;(2)從已知的相同性質中推出一個明確表達的一般性命題(猜想)7、A【解析】根據已知條件,利用累加法得到的通項公式,從而得到.【詳解】由,得,所以,所以.故選:A.8、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分離參數求解即可.【詳解】由得,,解得,因為,所以所以可得在上恒成立,即在上恒成立,故只需,,當時,,故故選:B9、D【解析】根據曲線方程的特征,發(fā)現曲線表示在軸上方的圖象,畫出圖形,根據圖形上直線的三個特殊位置,當已知直線位于直線位置時,把已知直線的解析式代入橢圓方程中,消去得到關于的一元二次方程,由題意可知根的判別式等于0即可求出此時對應的的值;當已知直線位于直線及直線的位置時,分別求出對應的的值,寫出滿足題意得的范圍,綜上,得到所有滿足題意得的取值范圍【詳解】根據曲線,得到,解得:;,畫出曲線的圖象,為橢圓在軸上邊的一部分,如圖所示:當直線在直線的位置時,直線與橢圓相切,故只有一個交點,把直線代入橢圓方程得:,得到,即,化簡得:,解得或(舍去),則時,直線與曲線只有一個公共點;當直線在直線位置時,直線與曲線剛好有兩個交點,此時,當直線在直線位置時,直線與曲線只有一個公共點,此時,則當時,直線與曲線只有一個公共點,綜上,滿足題意得的范圍是或故選:D10、B【解析】應用基本不等式“1”的代換求的最小值,注意等號成立條件,再根據題設不等式恒成立有,解一元二次不等式求解集即可.【詳解】由題設,,當且僅當時等號成立,∴要使恒成立,只需,故,∴.故選:B.11、A【解析】先求得點坐標,然后求得的角平分線所在的直線的方程.【詳解】,直線的斜率為,由于直線,與l的夾角相等,則的角平分線所在的直線的斜率為,所以所求直線方程為.故選:A12、B【解析】取AD中點為G,連接GF、GE,易知△EFG為等腰三角形,且∠EGF為異面直線AC和BD所成角或其補角,據此可求∠FEG大小,從而得EF和AC所成的角的大小【詳解】如圖,取AD中點為G,連接GF、GE,易知FG∥BD,GE∥AC,且FG=,GE=AC,故FG=GE,∠EGF為異面直線AC和BD所成角或其補角,故∠EGF=60°或120°故EF和AC所成角為∠FEG或其補角,當∠EGF=60°時,∠FEG=60°,當∠EGF=120°時,∠FEG=30°,∴EF和AC所成的角等于30°或60°故選:B二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據拋物線焦半徑公式,所以.故答案為:3.14、【解析】由題意先判斷函數為偶函數,再利用的導函數判斷在上單調遞增,根據偶函數的對稱性得上單調遞減.要使成立,即,解不等式即可得到答案.【詳解】,,為偶函數,當時,,故函數在上單調遞增.為偶函數,在上單調遞減.要使成立,即.故答案為:.15、9【解析】根據拋物線C:的焦點F到準線的距離為4,求得拋物線方程.再由和,得到點P的坐標,進而得到直線l的方程,與拋物線方程聯立求得的坐標,再由兩點間距離公式求解.【詳解】由拋物線C:的焦點F到準線的距離為4,所以,所以拋物線方程為.因為,,所以點P的縱坐標為1,代入拋物線方程,可得點P的橫坐標為,不妨設,則,故直線l的方程為,將其代入得.可得,故.故答案為:9【點睛】本題主要考查拋物線的方程與性質,還考查了運算求解的能力,屬于中檔題.16、2【解析】將圓轉化成標準式,結合圓心距判斷兩圓位置關系,進而求解.【詳解】由題意得,圓:,圓:,∴,∴與相交,有2條公切線.故答案為:2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)將圓的一般方程化為標準方程,求出圓心,代入直線方程即可求解.(2)設直線的方程為:,利用圓心到直線的距離即可求解.【小問1詳解】圓的標準方程為:,所以,圓心為由圓心在直線上,得.所以,圓的方程為:【小問2詳解】由題意可知直線的斜率存在,設直線的方程為:,即由于直線和圓相切,得解得:所以,直線方程為:或.18、(1)(2)【解析】(1)由,構造是以為首項,為公比等比數列,利用等比數列的通項公式可得結果;(2)由(1)得,利用裂項相消可求.【小問1詳解】由,得,又,所以數列是首項為2,公比為2的等比數列,則,即,故數列的通項公式為.【小問2詳解】由(1)知,,所以.因為,所以,所以數列的前n項和.19、(1);(2),.【解析】(1)根據題意可得,然后根據,,計算可得,最后可得結果.(2)假設直線的方程為,根據與拋物線相切,可得,然后與橢圓聯立,計算,然后計算點到的距離,計算,利用函數性質可得結果.【詳解】(1)由題意知:,.,得:,所以.所以的方程為.(2)設直線的方程為,則由,得得:所以直線的方程為.由,得得.又,所以點到的距離為..令,則,.此時,即【點睛】本題考查直線與圓錐曲線的綜合以及三角形面積問題,本題著重考查對問題分析能力以及計算能力,屬難題.20、(1);(2),a的取值范圍為.【解析】(1)先連結,由為等邊三角形,得到,,;再由橢圓定義,即可求出結果;(2)先由題意得到,滿足條件的點存在,當且僅當,,,根據三個式子聯立,結合題中條件,即可求出結果.【詳解】(1)連結,由等邊三角形可知:在中,,,,于是,故橢圓C的離心率為;(2)由題意可知,滿足條件的點存在,當且僅當,,,即①②③由②③以及得,又由①知,故;由②③得,所以,從而,故;當,時,存在滿足條件的點.故,a的取值范圍為.【點睛】本題主要考查求橢圓的離心率,以及橢圓中存在定點滿足題中條件的問題,熟記橢圓的簡單性質即可求解,考查計算能力,屬于中檔試題.21、(1);(2).【解析】(1)設等差數列的公差為,根據題意可得出關于、的方程組,解出這兩個量的值,可得出數列的通項公式;(2)求得,利用裂項法可求得.【小問1詳解】解:設等差數列的公差為,則,可得,由可得,即,解得,,故.【小問2詳解】解:,因此,.22、(1)見解析(2)見解析【解析】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《機械設計基礎》課件-第19章 機械的平衡與調速
- 肝腎聯合移植的手術與抗排斥治療
- 項目質量安全課件
- 交通安全教育培訓課件
- 音樂說課課件購買
- 油田開發(fā)項目環(huán)境影響報告書(模板)
- 電網側獨立儲能示范項目運營管理方案(范文模板)
- 大數據安全態(tài)勢感知解決方案
- 無人機森林防火應用探索
- 西醫(yī)內科題庫(含答案)
- 危險廢物突發(fā)事故應急演練方案
- DB11-T 2408.1-2025城市管理大數據平臺 第1部分:架構及接口規(guī)范
- 2023年08月江蘇省高郵市招考70名村級工作人員筆試上岸試題歷年
- 北京安全生產治本攻堅三年行動方案
- 建設單位全員安全生產責任清單
- GB/T 6896-2007鈮條
- GB/T 6075.1-2012機械振動在非旋轉部件上測量評價機器的振動第1部分:總則
- 大學2023年自主招生報名登記表
- 小學體育暑假特色作業(yè)
- 2020四川考研數學二真題【含答案】
- 壓縮機拆除方案
評論
0/150
提交評論