




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省西安市(師大附中)重點名校2024年中考數學押題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列圖形中,是軸對稱圖形的是()A. B. C. D.2.下列運算錯誤的是()A.(m2)3=m6B.a10÷a9=aC.x3?x5=x8D.a4+a3=a73.如圖,小明從A處出發沿北偏西30°方向行走至B處,又沿南偏西50°方向行走至C處,此時再沿與出發時一致的方向行走至D處,則∠BCD的度數為()A.100° B.80° C.50° D.20°4.《九章算術》中注有“今兩算得失相反,要令正負以名之”,意思是:今有兩數若其意義相反,則分別叫做正數與負數,若氣溫為零上10℃記作+10℃,則﹣3℃表示氣溫為()A.零上3℃ B.零下3℃ C.零上7℃ D.零下7℃5.在平面直角坐標系中,將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標是()A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)6.下列選項中,可以用來證明命題“若a2>b2,則a>b“是假命題的反例是()A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=17.四個有理數﹣1,2,0,﹣3,其中最小的是()A.﹣1B.2C.0D.﹣38.若數a使關于x的不等式組有解且所有解都是2x+6>0的解,且使關于y的分式方程+3=有整數解,則滿足條件的所有整數a的個數是()A.5 B.4 C.3 D.29.如圖,在△ABC中,點D在AB邊上,DE∥BC,與邊AC交于點E,連結BE,記△ADE,△BCE的面積分別為S1,S2,()A.若2AD>AB,則3S1>2S2 B.若2AD>AB,則3S1<2S2C.若2AD<AB,則3S1>2S2 D.若2AD<AB,則3S1<2S210.《九章算術》是我國古代數學的經典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設每枚黃金重x兩,每枚白銀重y兩,根據題意得()A.B.C.D.11.我國的釣魚島面積約為4400000m2,用科學記數法表示為()A.4.4×106B.44×105C.4×106D.0.44×10712.在平面直角坐標系中,將點P(﹣4,2)繞原點O順時針旋轉90°,則其對應點Q的坐標為()A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在矩形ABCD中,AB=4,BC=9,點E是AD邊上一動點,將邊AB沿BE折疊,點A的對應點為A′,若點A′到矩形較長兩對邊的距離之比為1:3,則AE的長為_____.14.如圖,在正六邊形ABCDEF中,AC于FB相交于點G,則值為_____.15.如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點E處,連接DE交AB于點F,當△DEB是直角三角形時,DF的長為_____.16.如圖,PA,PB是⊙O是切線,A,B為切點,AC是⊙O的直徑,若∠P=46°,則∠BAC=▲度.17.化簡:x2-4x+4x18.一副直角三角板疊放如圖所示,現將含45°角的三角板固定不動,把含30°角的三角板繞直角頂點沿逆時針方向勻速旋轉一周,第一秒旋轉5°,第二秒旋轉10°,第三秒旋轉5°,第四秒旋轉10°,…按此規律,當兩塊三角板的斜邊平行時,則三角板旋轉運動的時間為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標系中,拋物線y=x2+mx+n經過點A(3,0)、B(0,-3),點P是直線AB上的動點,過點P作x軸的垂線交拋物線于點M,設點P的橫坐標為t.分別求出直線AB和這條拋物線的解析式.若點P在第四象限,連接AM、BM,當線段PM最長時,求△ABM的面積.是否存在這樣的點P,使得以點P、M、B、O為頂點的四邊形為平行四邊形?若存在,請直接寫出點P的橫坐標;若不存在,請說明理由.20.(6分)如圖1,在長方形ABCD中,,,點P從A出發,沿的路線運動,到D停止;點Q從D點出發,沿路線運動,到A點停止.若P、Q兩點同時出發,速度分別為每秒、,a秒時P、Q兩點同時改變速度,分別變為每秒、(P、Q兩點速度改變后一直保持此速度,直到停止),如圖2是的面積和運動時間(秒)的圖象.(1)求出a值;(2)設點P已行的路程為,點Q還剩的路程為,請分別求出改變速度后,和運動時間(秒)的關系式;(3)求P、Q兩點都在BC邊上,x為何值時P,Q兩點相距3cm?21.(6分)中華文化,源遠流長,在文學方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”.某中學為了了解學生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題在全校學生中進行了抽樣調查,根據調查結果繪制成如圖所示的兩個不完整的統計圖,請結合圖中信息解決下列問題:(1)本次調查了名學生,扇形統計圖中“1部”所在扇形的圓心角為度,并補全條形統計圖;(2)此中學共有1600名學生,通過計算預估其中4部都讀完了的學生人數;(3)沒有讀過四大古典名著的兩名學生準備從四大固定名著中各自隨機選擇一部來閱讀,求他們選中同一名著的概率.22.(8分)我市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了如圖兩幅尚不完整的統計圖,請你根據統計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有______人,扇形統計圖中“了解”部分所對應扇形的圓心角為______°.(2)若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數為_______人.(3)若從對校園安全知識達到“了解”程度的3個女生A、B、C和2個男生M、N中分別隨機抽取1人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到女生A的概率.23.(8分)已知:如圖,平行四邊形ABCD中,E、F分別是邊BC和AD上的點,且BE=DF,求證:AE=CF24.(10分)如圖,分別以線段AB兩端點A,B為圓心,以大于AB長為半徑畫弧,兩弧交于C,D兩點,作直線CD交AB于點M,DE∥AB,BE∥CD.(1)判斷四邊形ACBD的形狀,并說明理由;(2)求證:ME=AD.25.(10分)如圖①,AB是⊙O的直徑,CD為弦,且AB⊥CD于E,點M為上一動點(不包括A,B兩點),射線AM與射線EC交于點F.(1)如圖②,當F在EC的延長線上時,求證:∠AMD=∠FMC.(2)已知,BE=2,CD=1.①求⊙O的半徑;②若△CMF為等腰三角形,求AM的長(結果保留根號).26.(12分)已知關于的一元二次方程(為實數且).求證:此方程總有兩個實數根;如果此方程的兩個實數根都是整數,求正整數的值.27.(12分)閱讀下面材料:已知:如圖,在正方形ABCD中,邊AB=a1.按照以下操作步驟,可以從該正方形開始,構造一系列的正方形,它們之間的邊滿足一定的關系,并且一個比一個小.操作步驟作法由操作步驟推斷(僅選取部分結論)第一步在第一個正方形ABCD的對角線AC上截取AE=a1,再作EF⊥AC于點E,EF與邊BC交于點F,記CE=a2(i)△EAF≌△BAF(判定依據是①);(ii)△CEF是等腰直角三角形;(iii)用含a1的式子表示a2為②:第二步以CE為邊構造第二個正方形CEFG;第三步在第二個正方形的對角線CF上截取FH=a2,再作IH⊥CF于點H,IH與邊CE交于點I,記CH=a3:(iv)用只含a1的式子表示a3為③:第四步以CH為邊構造第三個正方形CHIJ這個過程可以不斷進行下去.若第n個正方形的邊長為an,用只含a1的式子表示an為④請解決以下問題:(1)完成表格中的填空:①;②;③;④;(2)根據以上第三步、第四步的作法畫出第三個正方形CHIJ(不要求尺規作圖).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】分析:根據軸對稱圖形的概念求解.詳解:A、不是軸對稱圖形,故此選項不合題意;B、是軸對稱圖形,故此選項符合題意;C、不是軸對稱圖形,故此選項不合題意;D、不是軸對稱圖形,故此選項不合題意;故選B.點睛:本題考查了軸對稱圖形,軸對稱圖形的判斷方法:把某個圖象沿某條直線折疊,如果圖形的兩部分能夠重合,那么這個是軸對稱圖形.2、D【解析】【分析】利用合并同類項法則,單項式乘以單項式法則,同底數冪的乘法、除法的運算法則逐項進行計算即可得.【詳解】A、(m2)3=m6,正確;B、a10÷a9=a,正確;C、x3?x5=x8,正確;D、a4+a3=a4+a3,錯誤,故選D.【點睛】本題考查了合并同類項、單項式乘以單項式、同底數冪的乘除法,熟練掌握各運算的運算法則是解題的關鍵.3、B【解析】解:如圖所示:由題意可得:∠1=30°,∠3=50°,則∠2=30°,故由DC∥AB,則∠4=30°+50°=80°.故選B.點睛:此題主要考查了方向角的定義,正確把握定義得出∠3的度數是解題關鍵.4、B【解析】試題分析:由題意知,“-”代表零下,因此-3℃表示氣溫為零下3℃.故選B.考點:負數的意義5、B【解析】試題分析:由平移規律可得將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標是(1,5),故選B.考點:點的平移.6、A【解析】
根據要證明一個結論不成立,可以通過舉反例的方法來證明一個命題是假命題.由此即可解答.【詳解】∵當a=﹣2,b=1時,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命題的反例.故選A.【點睛】本題考查了命題與定理,要說明數學命題的錯誤,只需舉出一個反例即可,這是數學中常用的一種方法.7、D【解析】解:∵-1<-1<0<2,∴最小的是-1.故選D.8、D【解析】
由不等式組有解且滿足已知不等式,以及分式方程有整數解,確定出滿足題意整數a的值即可.【詳解】不等式組整理得:,由不等式組有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=,由分式方程有整數解,得到a=0,2,共2個,故選:D.【點睛】本題考查了分式方程的解,解一元一次不等式,以及解一元一次不等式組,熟練掌握運算法則是解本題的關鍵.9、D【解析】
根據題意判定△ADE∽△ABC,由相似三角形的面積之比等于相似比的平方解答.【詳解】∵如圖,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴,∴若1AD>AB,即時,,此時3S1>S1+S△BDE,而S1+S△BDE<1S1.但是不能確定3S1與1S1的大小,故選項A不符合題意,選項B不符合題意.若1AD<AB,即時,,此時3S1<S1+S△BDE<1S1,故選項C不符合題意,選項D符合題意.故選D.【點睛】考查了相似三角形的判定與性質,三角形相似的判定一直是中考考查的熱點之一,在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.10、D【解析】
根據題意可得等量關系:①9枚黃金的重量=11枚白銀的重量;②(10枚白銀的重量+1枚黃金的重量)-(1枚白銀的重量+8枚黃金的重量)=13兩,根據等量關系列出方程組即可.【詳解】設每枚黃金重x兩,每枚白銀重y兩,由題意得:,故選:D.【點睛】此題主要考查了由實際問題抽象出二元一次方程組,關鍵是正確理解題意,找出題目中的等量關系.11、A【解析】4400000=4.4×1.故選A.點睛:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.12、A【解析】
首先求出∠MPO=∠QON,利用AAS證明△PMO≌△ONQ,即可得到PM=ON,OM=QN,進而求出Q點坐標.【詳解】作圖如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P點坐標為(﹣4,2),∴Q點坐標為(2,4),故選A.【點睛】此題主要考查了旋轉的性質,以及全等三角形的判定和性質,關鍵是掌握旋轉后對應線段相等.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、或【解析】
由,,得,所以.再以①和②兩種情況分類討論即可得出答案.【詳解】因為翻折,所以,,過作,交AD于F,交BC于G,根據題意,,.若點在矩形ABCD的內部時,如圖則GF=AB=4,由可知.又..又....若則,..則...若則,..則...故答案或.【點睛】本題主要考查了翻折問題和相似三角形判定,靈活運用是關鍵錯因分析:難題,失分原因有3點:(1)不能靈活運用矩形和折疊與動點問題疊的性質;(2)沒有分情況討論,由于點A′A′到矩形較長兩對邊的距離之比為1:3,需要分A′M:A′N=1:3,A′M:A′N=1:3和A′M:A′N=3:1,A′M:A′N=3:1這兩種情況;(3)不能根據相似三角形對應邊成比例求出三角形的邊長.14、.【解析】
由正六邊形的性質得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性質得出∠ABF=∠BAC=∠BCA=30°,證出AG=BG,∠CBG=90°,由含30°角的直角三角形的性質得出CG=2BG=2AG,即可得出答案.【詳解】∵六邊形ABCDEF是正六邊形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴=;故答案為:.【點睛】本題考查了正六邊形的性質、等腰三角形的判定、含30°角的直角三角形的性質等知識;熟練掌握正六邊形的性質和含30°角的直角三角形的性質是解題的關鍵.15、或【解析】試題分析:如圖4所示;點E與點C′重合時.在Rt△ABC中,BC==4.由翻折的性質可知;AE=AC=3、DC=DE.則EB=2.設DC=ED=x,則BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=.∴DE=.如圖2所示:∠EDB=90時.由翻折的性質可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四邊形ACDC′為矩形.又∵AC=AC′,∴四邊形ACDC′為正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=4.∵DE∥AC,∴△BDE∽△BCA.∴,即.解得:DE=.點D在CB上運動,∠DBC′<90°,故∠DBC′不可能為直角.考點:翻折變換(折疊問題).16、1.【解析】
由PA、PB是圓O的切線,根據切線長定理得到PA=PB,即三角形APB為等腰三角形,由頂角的度數,利用三角形的內角和定理求出底角的度數,再由AP為圓O的切線,得到OA與AP垂直,根據垂直的定義得到∠OAP為直角,再由∠OAP-∠PAB即可求出∠BAC的度數【詳解】∵PA,PB是⊙O是切線,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=.又∵PA是⊙O是切線,AO為半徑,∴OA⊥AP.∴∠OAP=90°.∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°.故答案為:1【點睛】此題考查了切線的性質,切線長定理,等腰三角形的性質,以及三角形的內角和定理,熟練掌握定理及性質是解本題的關鍵.17、﹣x-2x【解析】
直接利用分式的混合運算法則即可得出.【詳解】原式====-x-2故答案為:-x-2【點睛】此題主要考查了分式的化簡,正確掌握運算法則是解題關鍵.18、14s或38s.【解析】試題解析:分兩種情況進行討論:如圖:旋轉的度數為:每兩秒旋轉如圖:旋轉的度數為:每兩秒旋轉故答案為14s或38s.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)拋物線的解析式是.直線AB的解析式是.(2).(3)P點的橫坐標是或.【解析】
(1)分別利用待定系數法求兩函數的解析式:把A(3,0)B(0,﹣3)分別代入y=x2+mx+n與y=kx+b,得到關于m、n的兩個方程組,解方程組即可;(2)設點P的坐標是(t,t﹣3),則M(t,t2﹣2t﹣3),用P點的縱坐標減去M的縱坐標得到PM的長,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根據二次函數的最值得到當t=﹣=時,PM最長為=,再利用三角形的面積公式利用S△ABM=S△BPM+S△APM計算即可;(3)由PM∥OB,根據平行四邊形的判定得到當PM=OB時,點P、M、B、O為頂點的四邊形為平行四邊形,然后討論:當P在第四象限:PM=OB=3,PM最長時只有,所以不可能;當P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;當P在第三象限:PM=OB=3,t2﹣3t=3,分別解一元二次方程即可得到滿足條件的t的值.【詳解】解:(1)把A(3,0)B(0,-3)代入,得解得所以拋物線的解析式是.設直線AB的解析式是,把A(3,0)B(0,)代入,得解得所以直線AB的解析式是.(2)設點P的坐標是(),則M(,),因為在第四象限,所以PM=,當PM最長時,此時==.(3)若存在,則可能是:①P在第四象限:平行四邊形OBMP,PM=OB=3,PM最長時,所以不可能.②P在第一象限平行四邊形OBPM:PM=OB=3,,解得,(舍去),所以P點的橫坐標是.③P在第三象限平行四邊形OBPM:PM=OB=3,,解得(舍去),①,所以P點的橫坐標是.所以P點的橫坐標是或.20、(1)6;(2);;(3)10或;【解析】
(1)根據圖象變化確定a秒時,P點位置,利用面積求a;(2)P、Q兩點的函數關系式都是在運動6秒的基礎上得到的,因此注意在總時間內減去6秒;(3)以(2)為基礎可知,兩個點相距3cm分為相遇前相距或相遇后相距,因此由(2)可列方程.【詳解】(1)由圖象可知,當點P在BC上運動時,△APD的面積保持不變,則a秒時,點P在AB上.,∴AP=6,則a=6;(2)由(1)6秒后點P變速,則點P已行的路程為y1=6+2(x﹣6)=2x﹣6,∵Q點路程總長為34cm,第6秒時已經走12cm,故點Q還剩的路程為y2=34﹣12﹣;(3)當P、Q兩點相遇前相距3cm時,﹣(2x﹣6)=3,解得x=10,當P、Q兩點相遇后相距3cm時,(2x﹣6)﹣()=3,解得x=,∴當x=10或時,P、Q兩點相距3cm【點睛】本題是雙動點問題,解答時應注意分析圖象的變化與動點運動位置之間的關系.列函數關系式時,要考慮到時間x的連續性才能直接列出函數關系式.21、(1)40、126(2)240人(3)【解析】
(1)用2部的人數10除以2部人數所占的百分比25%即可求出本次調查的學生數,根據扇形圓心角的度數=部分占總體的百分比×360°,即可得到“1部”所在扇形的圓心角;(2)用1600乘以4部所占的百分比即可;(3)根據樹狀圖所得的結果,判斷他們選中同一名著的概率.【詳解】(1)調查的總人數為:10÷25%=40,∴1部對應的人數為40﹣2﹣10﹣8﹣6=14,則扇形統計圖中“1部”所在扇形的圓心角為:×360°=126°;故答案為40、126;(2)預估其中4部都讀完了的學生有1600×=240人;(3)將《西游記》、《三國演義》、《水滸傳》、《紅樓夢》分別記作A,B,C,D,畫樹狀圖可得:共有16種等可能的結果,其中選中同一名著的有4種,故P(兩人選中同一名著)==.【點睛】本題考查了扇形統計圖和條形統計圖的綜合,用樣本估計總體,列表法或樹狀圖法求概率.解答此類題目,要善于發現二者之間的關聯點,即兩個統計圖都知道了哪個量的數據,從而用條形統計圖中的具體數量除以扇形統計圖中占的百分比,求出樣本容量,進而求解其它未知的量.22、(1)60,30;;(2)300;(3)【解析】
(1)由了解很少的有30人,占50%,可求得接受問卷調查的學生數,繼而求得扇形統計圖中“了解”部分所對應扇形的圓心角;(2)利用樣本估計總體的方法,即可求得答案;(3)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與恰好抽到女生A的情況,再利用概率公式求解即可求得答案.【詳解】解:(1)∵了解很少的有30人,占50%,∴接受問卷調查的學生共有:30÷50%=60(人);∵了解部分的人數為60﹣(15+30+10)=5,∴扇形統計圖中“了解”部分所對應扇形的圓心角為:×360°=30°;故答案為60,30;(2)根據題意得:900×=300(人),則估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數為300人,故答案為300;(3)畫樹狀圖如下:所有等可能的情況有6種,其中抽到女生A的情況有2種,所以P(抽到女生A)==.【點睛】此題考查了列表法或樹狀圖法求概率以及條形統計圖與扇形統計圖.用到的知識點為:概率=所求情況數與總情況數之比.23、詳見解析【解析】
根據平行四邊形的性質和已知條件證明△ABE≌△CDF,再利用全等三角形的性質:即可得到AE=CF.【詳解】證:∵四邊形ABCD是平行四邊形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF.(其他證法也可)24、(1)四邊形ACBD是菱形;理由見解析;(2)證明見解析.【解析】
(1)根據題意得出,即可得出結論;(2)先證明四邊形是平行四邊形,再由菱形的性質得出,證明四邊形是矩形,得出對角線相等,即可得出結論.【詳解】(1)解:四邊形ACBD是菱形;理由如下:根據題意得:AC=BC=BD=AD,∴四邊形ACBD是菱形(四條邊相等的四邊形是菱形);(2)證明:∵DE∥AB,BE∥CD,∴四邊形BEDM是平行四邊形,∵四邊形ACBD是菱形,∴AB⊥CD,∴∠BMD=90°,∴四邊形ACBD是矩形,∴ME=BD,∵AD=BD,∴ME=AD.【點睛】本題考查了菱形的判定、矩形的判定與性質、平行四邊形的判定,熟練掌握菱形的判定和矩形的判定與性質,并能進行推理結論是解決問題的關鍵.25、(1)詳見解析;(2)2;②1或【解析】
(1)想辦法證明∠AMD=∠ADC,∠FMC=∠ADC即可解決問題;(2)①在Rt△OCE中,利用勾股定理構建方程即可解決問題;②分兩種情形討論求解即可.【詳解】解:(1)證明:如圖②中,連接AC、AD.∵AB⊥CD,∴CE=ED,∴AC=AD,∴∠ACD=∠ADC,∵∠AMD=∠ACD,∴∠AMD=∠ADC,∵∠FMC+∠AMC=110°,∠AMC+∠ADC=110°,∴∠FMC=∠ADC,∴∠FMC=∠ADC,∴∠FMC=∠AMD.(2)解:①如圖②﹣1中,連接OC.設⊙
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《碳中和概論》課件第1章 緒論
- 智能家電產品代理銷售及售后服務協議
- 語文現代散文閱讀理解技巧提升課
- 《五言絕句詩詞教學:唐詩的欣賞與創作》
- 市場營銷推廣合作協議詳細版
- 學習的重要性演講演講稿類話題12篇
- 石油勘探項目合作合同
- 食品安全與健康營養知識要點梳理與解析
- 2025年藥學基礎知識期末考試試卷及答案
- 2025年信息傳播與社會網絡研究期末考試試題及答案
- 初中信息技術科學版七年級上冊第二單元我的信息生活二進制及二進制與十進制的轉換PPT
- DB37-T 5026-2022《居住建筑節能設計標準》
- 消毒供應中心設備使用及維護保養課件
- 三高共管六病同防診療路徑與一體化服務指南(2022版)20-39-30
- 國開期末考試《基礎會計》機考試題(第3套)
- 外貿形式發票模板
- 壓力管道焊接工藝卡
- 會議服務中心經營管理服務方案
- 河南省南陽市高中畢業生登記表普通高中學生學籍冊
- 雷曼破產前的德國國家發展銀行十分鐘的悲劇
- 國際政治經濟學的主要流派課件
評論
0/150
提交評論