陜西省西安交通大附中2024屆中考沖刺卷數學試題含解析_第1頁
陜西省西安交通大附中2024屆中考沖刺卷數學試題含解析_第2頁
陜西省西安交通大附中2024屆中考沖刺卷數學試題含解析_第3頁
陜西省西安交通大附中2024屆中考沖刺卷數學試題含解析_第4頁
陜西省西安交通大附中2024屆中考沖刺卷數學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省西安交通大附中2024屆中考沖刺卷數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.2018的相反數是()A. B.2018 C.-2018 D.2.已知拋物線y=ax2+bx+c與x軸交于點A和點B,頂點為P,若△ABP組成的三角形恰為等腰直角三角形,則b2﹣4ac的值為()A.1 B.4 C.8 D.123.函數y=中,自變量x的取值范圍是()A.x>3 B.x<3 C.x=3 D.x≠34.將一次函數的圖象向下平移2個單位后,當時,的取值范圍是()A. B. C. D.5.賓館有50間房供游客居住,當每間房每天定價為180元時,賓館會住滿;當每間房每天的定價每增加10元時,就會空閑一間房.如果有游客居住,賓館需對居住的每間房每天支出20元的費用.當房價定為多少元時,賓館當天的利潤為10890元?設房價比定價180元增加x元,則有()A.(x﹣20)(50﹣)=10890 B.x(50﹣)﹣50×20=10890C.(180+x﹣20)(50﹣)=10890 D.(x+180)(50﹣)﹣50×20=108906.下列敘述,錯誤的是()A.對角線互相垂直且相等的平行四邊形是正方形B.對角線互相垂直平分的四邊形是菱形C.對角線互相平分的四邊形是平行四邊形D.對角線相等的四邊形是矩形7.下列各式:①a0=1②a2·a3=a5③2–2=–④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正確的是()A.①②③ B.①③⑤ C.②③④ D.②④⑤8.下列判斷錯誤的是()A.兩組對邊分別相等的四邊形是平行四邊形 B.四個內角都相等的四邊形是矩形C.兩條對角線垂直且平分的四邊形是正方形 D.四條邊都相等的四邊形是菱形9.下列運算結果是無理數的是()A.3× B. C. D.10.如圖,水平的講臺上放置的圓柱體筆筒和正方體粉筆盒,其左視圖是()A. B.C. D.11.已知線段AB=8cm,點C是直線AB上一點,BC=2cm,若M是AB的中點,N是BC的中點,則線段MN的長度為()A.5cm B.5cm或3cm C.7cm或3cm D.7cm12.如圖,在平面直角坐標系中,以O為圓心,適當長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧在第二象限交于點P.若點P的坐標為(2a,b+1),則a與b的數量關系為()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.函數y=+中,自變量x的取值范圍是_____.14.如圖,在邊長為1正方形ABCD中,點P是邊AD上的動點,將△PAB沿直線BP翻折,點A的對應點為點Q,連接BQ、DQ.則當BQ+DQ的值最小時,tan∠ABP=_____.15.如圖,在正方形ABCD中,BC=2,E、F分別為射線BC,CD上兩個動點,且滿足BE=CF,設AE,BF交于點G,連接DG,則DG的最小值為_______.16.如圖,在△ABC中,BC=8,高AD=6,矩形EFGH的一邊EF在邊BC上,其余兩個頂點G、H分別在邊AC、AB上,則矩形EFGH的面積最大值為_____.17.__.18.如圖,等腰△ABC的周長為21,底邊BC=5,AB的垂直平分線DE交AB于點D,交AC于點E,則△BEC的周長為____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某經銷商從市場得知如下信息:A品牌手表B品牌手表進價(元/塊)700100售價(元/塊)900160他計劃用4萬元資金一次性購進這兩種品牌手表共100塊,設該經銷商購進A品牌手表x塊,這兩種品牌手表全部銷售完后獲得利潤為y元.試寫出y與x之間的函數關系式;若要求全部銷售完后獲得的利潤不少于1.26萬元,該經銷商有哪幾種進貨方案;選擇哪種進貨方案,該經銷商可獲利最大;最大利潤是多少元.20.(6分)周末,甲、乙兩名大學生騎自行車去距學校6000米的凈月潭公園.兩人同時從學校出發,以a米/分的速度勻速行駛.出發4.5分鐘時,甲同學發現忘記帶學生證,以1.5a米/分的速度按原路返回學校,取完學生證(在學校取學生證所用時間忽略不計),繼續以返回時的速度追趕乙.甲追上乙后,兩人以相同的速度前往凈月潭.乙騎自行車的速度始終不變.設甲、乙兩名大學生距學校的路程為s(米),乙同學行駛的時間為t(分),s與t之間的函數圖象如圖所示.(1)求a、b的值.(2)求甲追上乙時,距學校的路程.(3)當兩人相距500米時,直接寫出t的值是.21.(6分)如圖,在四邊形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,點E,F同時從B點出發,沿射線BC向右勻速移動,已知點F的移動速度是點E移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG,設E點移動距離為x(0<x<6).(1)∠DCB=度,當點G在四邊形ABCD的邊上時,x=;(2)在點E,F的移動過程中,點G始終在BD或BD的延長線上運動,求點G在線段BD的中點時x的值;(3)當2<x<6時,求△EFG與四邊形ABCD重疊部分面積y與x之間的函數關系式,當x取何值時,y有最大值?并求出y的最大值.22.(8分)甲、乙兩人在5次打靶測試中命中的環數如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填寫下表:平均數

眾數

中位數

方差

8

8

0.4

9

3.2

(2)教練根據這5次成績,選擇甲參加射擊比賽,教練的理由是什么?(3)如果乙再射擊1次,命中8環,那么乙的射擊成績的方差.(填“變大”、“變小”或“不變”).23.(8分)求不等式組的整數解.24.(10分)“端午節”是我國的傳統佳節,民間歷來有吃“粽子”的習俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節前對某居民區市民進行了抽樣調查,并將調查情況繪制成如下兩幅統計圖(尚不完整).請根據以上信息回答:(1)本次參加抽樣調查的居民有多少人?(2)將兩幅不完整的圖補充完整;(3)若居民區有8000人,請估計愛吃D粽的人數;(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.25.(10分)圖中的每個小方格都是邊長為1個單位長度的正方形,每個小正方形的頂點叫格點,△ABC的頂點均在格點上(1)畫出將△ABC繞點B按逆時針方向旋轉90°后所得到的△A1BC1;(2)畫出將△ABC向右平移6個單位后得到的△A2B2C2;(3)在(1)中,求在旋轉過程中△ABC掃過的面積.26.(12分)如圖,已知A是⊙O上一點,半徑OC的延長線與過點A的直線交于點B,OC=BC,AC=OB.求證:AB是⊙O的切線;若∠ACD=45°,OC=2,求弦CD的長.27.(12分)如圖,用紅、藍兩種顏色隨機地對A,B,C三個區域分別進行涂色,每個區域必須涂色并且只能涂一種顏色,請用列舉法(畫樹狀圖或列表)求A,C兩個區域所涂顏色不相同的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】【分析】根據只有符號不同的兩個數互為相反數進行解答即可得.【詳解】2018與-2018只有符號不同,由相反數的定義可得2018的相反數是-2018,故選C.【點睛】本題考查了相反數的定義,熟練掌握相反數的定義是解題的關鍵.2、B【解析】

設拋物線與x軸的兩交點A、B坐標分別為(x1,0),(x2,0),利用二次函數的性質得到P(-,),利用x1、x2為方程ax2+bx+c=0的兩根得到x1+x2=-,x1?x2=,則利用完全平方公式變形得到AB=|x1-x2|=,接著根據等腰直角三角形的性質得到||=?,然后進行化簡可得到b2-1ac的值.【詳解】設拋物線與x軸的兩交點A、B坐標分別為(x1,0),(x2,0),頂點P的坐標為(-,),則x1、x2為方程ax2+bx+c=0的兩根,∴x1+x2=-,x1?x2=,∴AB=|x1-x2|====,∵△ABP組成的三角形恰為等腰直角三角形,

∴||=?,=,∴b2-1ac=1.故選B.【點睛】本題考查了拋物線與x軸的交點:把求二次函數y=ax2+bx+c(a,b,c是常數,a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數的性質和等腰直角三角形的性質.3、D【解析】由題意得,x﹣1≠0,解得x≠1.故選D.4、C【解析】

直接利用一次函數平移規律,即k不變,進而利用一次函數圖象的性質得出答案.【詳解】將一次函數向下平移2個單位后,得:,當時,則:,解得:,當時,,故選C.【點睛】本題主要考查了一次函數平移,解一元一次不等式,正確利用一次函數圖象上點的坐標性質得出是解題關鍵.5、C【解析】

設房價比定價180元増加x元,根據利潤=房價的凈利潤×入住的房同數可得.【詳解】解:設房價比定價180元增加x元,根據題意,得(180+x﹣20)(50﹣)=1.故選:C.【點睛】此題考查一元二次方程的應用問題,主要在于找到等量關系求解.6、D【解析】【分析】根據正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定定理對選項逐一進行分析,即可判斷出答案.【詳解】A.對角線互相垂直且相等的平行四邊形是正方形,正確,不符合題意;B.對角線互相垂直平分的四邊形是菱形,正確,不符合題意;C.對角線互相平分的四邊形是平行四邊形,正確,不符合題意;D.對角線相等的平行四邊形是矩形,故D選項錯誤,符合題意,故選D.【點睛】本題考查了正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定等,熟練掌握相關判定定理是解答此類問題的關鍵.7、D【解析】

根據實數的運算法則即可一一判斷求解.【詳解】①有理數的0次冪,當a=0時,a0=0;②為同底數冪相乘,底數不變,指數相加,正確;③中2–2=,原式錯誤;④為有理數的混合運算,正確;⑤為合并同類項,正確.故選D.8、C【解析】

根據平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,對選項進行判斷即可【詳解】解:A、兩組對邊分別相等的四邊形是平行四邊形,故本選項正確;B、四個內角都相等的四邊形是矩形,故本選項正確;C、兩條對角線垂直且平分的四邊形是菱形,不一定是正方形,故本選項錯誤;D、四條邊都相等的四邊形是菱形,故本選項正確.故選C【點睛】此題綜合考查了平行四邊形的判定,矩形的判定,菱形的判定,正方形的判定,熟練掌握判定法則才是解題關鍵9、B【解析】

根據二次根式的運算法則即可求出答案.【詳解】A選項:原式=3×2=6,故A不是無理數;B選項:原式=,故B是無理數;C選項:原式==6,故C不是無理數;D選項:原式==12,故D不是無理數故選B.【點睛】考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則,本題屬于基礎題型.10、C【解析】

根據左視圖是從物體的左面看得到的視圖解答即可.【詳解】解:水平的講臺上放置的圓柱形筆筒和正方體形粉筆盒,其左視圖是一個含虛線的長方形,故選C.【點睛】本題考查的是幾何體的三視圖,左視圖是從物體的左面看得到的視圖.11、B【解析】(1)如圖1,當點C在點A和點B之間時,∵點M是AB的中點,點N是BC的中點,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB-BN=3cm;(2)如圖2,當點C在點B的右側時,∵點M是AB的中點,點N是BC的中點,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB+BN=5cm.綜上所述,線段MN的長度為5cm或3cm.故選B.點睛:解本題時,由于題目中告訴的是點C在直線AB上,因此根據題目中所告訴的AB和BC的大小關系要分點C在線段AB上和點C在線段AB的延長線上兩種情況分析解答,不要忽略了其中任何一種.12、B【解析】試題分析:根據作圖方法可得點P在第二象限角平分線上,則P點橫縱坐標的和為0,即2a+b+1=0,∴2a+b=﹣1.故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x≥﹣2且x≠1【解析】分析:根據使分式和二次根式有意義的要求列出關于x的不等式組,解不等式組即可求得x的取值范圍.詳解:∵有意義,∴,解得:且.故答案為:且.點睛:本題解題的關鍵是需注意:要使函數有意義,的取值需同時滿足兩個條件:和,二者缺一不可.14、﹣1【解析】

連接DB,若Q點落在BD上,此時和最短,且為,設AP=x,則PD=1﹣x,PQ=x.解直角三角形得到AP=﹣1,根據三角函數的定義即可得到結論.【詳解】如圖:連接DB,若Q點落在BD上,此時和最短,且為,設AP=x,則PD=1﹣x,PQ=x.∵∠PDQ=45°,∴PD=PQ,即1﹣x=,∴x=﹣1,∴AP=﹣1,∴tan∠ABP==﹣1,故答案為:﹣1.【點睛】本題考查了翻折變換(折疊問題),正方形的性質,軸對稱﹣最短路線問題,正確的理解題意是解題的關鍵.15、﹣1【解析】

先由圖形確定:當O、G、D共線時,DG最??;根據正方形的性質證明△ABE≌△BCF(SAS),可得∠AGB=90°,利用勾股定理可得OD的長,從而得DG的最小值.【詳解】在正方形ABCD中,AB=BC,∠ABC=∠BCD,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠CBF+∠ABF=90°∴∠BAE+∠ABF=90°∴∠AGB=90°∴點G在以AB為直徑的圓上,由圖形可知:當O、G、D在同一直線上時,DG有最小值,如圖所示:∵正方形ABCD,BC=2,∴AO=1=OG∴OD=,∴DG=?1,故答案為?1.【點睛】本題考查了正方形的性質與全等三角形的判定與性質,解題的關鍵是熟練的掌握正方形的性質與全等三角形的判定與性質.16、1【解析】

設HG=x,根據相似三角形的性質用x表示出KD,根據矩形面積公式列出二次函數解析式,根據二次函數的性質計算即可.【詳解】解:設HG=x.∵四邊形EFGH是矩形,∴HG∥BC,∴△AHG∽△ABC,∴=,即=,解得:KD=6﹣x,則矩形EFGH的面積=x(6﹣x)=﹣x2+6x=(x﹣4)2+1,則矩形EFGH的面積最大值為1.故答案為1.【點睛】本題考查的是相似三角形的判定和性質、二次函數的性質,掌握相似三角形的判定定理和性質定理是解題的關鍵.17、.【解析】

根據去括號法則和合并同類二次根式法則計算即可.【詳解】解:原式故答案為:【點睛】此題考查的是二次根式的加減運算,掌握去括號法則和合并同類二次根式法則是解決此題的關鍵.18、3【解析】試題分析:因為等腰△ABC的周長為33,底邊BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周長為=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.考點:3.等腰三角形的性質;3.垂直平分線的性質.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=140x+6000;(2)三種,答案見解析;(3)選擇方案③進貨時,經銷商可獲利最大,最大利潤是13000元.【解析】

(1)根據利潤y=(A售價﹣A進價)x+(B售價﹣B進價)×(100﹣x)列式整理即可;(2)全部銷售后利潤不少于1.26萬元得到一元一次不等式組,求出滿足題意的x的正整數值即可;(3)利用y與x的函數關系式的增減性來選擇哪種方案獲利最大,并求此時的最大利潤即可.【詳解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.由700x+100(100﹣x)≤40000得x≤50.∴y與x之間的函數關系式為y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又∵x≤50,∴經銷商有以下三種進貨方案:方案A品牌(塊)B品牌(塊)①4852②4951③5050(3)∵140>0,∴y隨x的增大而增大.∴x=50時y取得最大值.又∵140×50+6000=13000,∴選擇方案③進貨時,經銷商可獲利最大,最大利潤是13000元.【點睛】本題考查由實際問題列函數關系式;一元一次不等式的應用;一次函數的應用.20、(1)a的值為200,b的值為30;(2)甲追上乙時,與學校的距離4100米;(3)1.1或17.1.【解析】

(1)根據速度=路程÷時間,即可解決問題.(2)首先求出甲返回用的時間,再列出方程即可解決問題.(3)分兩種情形列出方程即可解決問題.【詳解】解:(1)由題意a==200,b==30,∴a=200,b=30.(2)+4.1=7.1,設t分鐘甲追上乙,由題意,300(t?7.1)=200t,解得t=22.1,22.1×200=4100,∴甲追上乙時,距學校的路程4100米.(3)兩人相距100米是的時間為t分鐘.由題意:1.1×200(t?4.1)+200(t?4.1)=100,解得t=1.1分鐘,或300(t?7.1)+100=200t,解得t=17.1分鐘,故答案為1.1分鐘或17.1分鐘.點睛:本題主要考查了函數圖象的讀圖能力和函數與實際問題結合的應用.要能根據函數圖象的性質和圖象上的數據分析即圖象的變化趨勢得出函數的類型和所需要的條件,結合實際意義得到正確的結論.21、(1)30;2;(2)x=1;(3)當x=時,y最大=;【解析】

(1)如圖1中,作DH⊥BC于H,則四邊形ABHD是矩形.AD=BH=3,BC=6,CH=BC﹣BH=3,當等邊三角形△EGF的高=時,點G在AD上,此時x=2;(2)根據勾股定理求出的長度,根據三角函數,求出∠ADB=30°,根據中點的定義得出根據等邊三角形的性質得到,即可求出x的值;

(3)圖2,圖3三種情形解決問題.①當2<x<3時,如圖2中,點E、F在線段BC上,△EFG與四邊形ABCD重疊部分為四邊形EFNM;②當3≤x<6時,如圖3中,點E在線段BC上,點F在射線BC上,重疊部分是△ECP;【詳解】(1)作DH⊥BC于H,則四邊形ABHD是矩形.∵AD=BH=3,BC=6,∴CH=BC﹣BH=3,在Rt△DHC中,CH=3,∴當等邊三角形△EGF的高等于時,點G在AD上,此時x=2,∠DCB=30°,故答案為30,2,(2)如圖∵AD∥BC∴∠A=180°﹣∠ABC=180°﹣90°=90°在Rt△ABD中,∴∠ADB=30°∵G是BD的中點∴∵AD∥BC∴∠ADB=∠DBC=30°∵△GEF是等邊三角形,∴∠GFE=60°∴∠BGF=90°在Rt△BGF中,∴2x=2即x=1;(3)分兩種情況:當2<x<3,如圖2點E、點F在線段BC上△GEF與四邊形ABCD重疊部分為四邊形EFNM∵∠FNC=∠GFE﹣∠DCB=60°﹣30°=30°∴∠FNC=∠DCB∴FN=FC=6﹣2x∴GN=x﹣(6﹣2x)=3x﹣6∵∠FNC=∠GNM=30°,∠G=60°∴∠GMN=90°在Rt△GNM中,∴∴當時,最大當3≤x<6時,如圖3,點E在線段BC上,點F在線段BC的延長線上,△GEF與四邊形ABCD重疊部分為△ECP∵∠PCE=30°,∠PEC=60°∴∠EPC=90°在Rt△EPC中EC=6﹣x,對稱軸為當x<6時,y隨x的增大而減小∴當x=3時,最大綜上所述:當時,最大【點睛】屬于四邊形的綜合題,考查動點問題,等邊三角形的性質,三角函數,二次函數的最值等,綜合性比較強,難度較大.22、(1)填表見解析;(2)理由見解析;(3)變小.【解析】

(1)根據眾數、平均數和中位數的定義求解:(2)方差就是和中心偏離的程度,用來衡量一批數據的波動大?。催@批數據偏離平均數的大小)在樣本容量相同的情況下,方差越大,說明數據的波動越大,越不穩定.(3)根據方差公式求解:如果乙再射擊1次,命中8環,那么乙的射擊成績的方差變?。驹斀狻吭囶}分析:試題解析:解:(1)甲的眾數為8,乙的平均數=(5+9+7+10+9)=8,乙的中位數為9.故填表如下:平均數

眾數

中位數

方差

8

8

8

0.4

8

9

9

3.2

(2)因為他們的平均數相等,而甲的方差小,發揮比較穩定,所以選擇甲參加射擊比賽;(3)如果乙再射擊1次,命中8環,平均數不變,根據方差公式可得乙的射擊成績的方差變小.考點:1.方差;2.算術平均數;3.中位數;4.眾數.23、-1,-1,0,1,1【解析】分析:先求出不等式組的解集,然后求出整數解.詳解:,由不等式①,得:x≥﹣1,由不等式②,得:x<3,故原不等式組的解集是﹣1≤x<3,∴不等式組的整數解是:﹣1、﹣1、0、1、1.點睛:本題考查了解一元一次不等式的整數解,解答本題的關鍵是明確解一元一次不等式組的方法.24、(1)600(2)見解析(3)3200(4)【解析】(1)60÷10%=600(人).

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論