




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
數(shù)字圖像處理
(DigitalImageProcessing)圖像分割I(lǐng)magesegmentationdividesanimageintoregionsthatareconnectedandhavesomesimilaritywithintheregionandsomedifferencebetweenadjacentregions.
Thegoalisusuallytofindindividualobjectsinanimage.Forthemostparttherearefundamentallytwokindsofapproachestosegmentation:discontinuityandsimilarity.Similaritymaybeduetopixelintensity,colorortexture.Differencesaresuddenchanges(discontinuities)inanyofthese,butespeciallysuddenchangesinintensityalongaboundaryline,whichiscalledanedge.ConceptsandApproachesWhatisImageSegmentation?ImageSegmentationMethodsThresholdingBoundary-basedRegion-based:regiongrowing,splittingandmergingConceptsandApproachesPartitionanimageintoregions,eachassociatedwithanobjectbutwhatdefinesanobject?Howtodefinethesimilaritybetweenregions?FromProf.XinLiAssumption:therangeofintensitylevelscoveredbyobjectsofinterestisdifferentfromthebackground.ThresholdingMethodThresholdingMethodthresholdinghistogramsinglethresholdmultiplethresholdsFrom[Gonzalez&Woods]GlobalThresholdingThresholdingMethod:BasicGlobalThresholding選取一個(gè)全局閾值T的初始估計(jì)用T分割圖像為兩部分:G1和G2計(jì)算區(qū)域G1和G2中的灰度均值m1和m2計(jì)算新的閾值:T=0.5(m1+m2)重復(fù)步驟2-4,直至T值收斂全局閾值估計(jì)基本算法GlobalThresholdingThresholdingMethod:BasicGlobalThresholdingThismethodtreatspixelvaluesasprobabilitydensityfunctions.Thegoalofthismethodistominimizetheprobabilityofmisclassifyingpixelsaseitherobjectorbackground.Therearetwokindsoferror:mislabelinganobjectpixelasbackground,andmislabelingabackgroundpixelasobject.OptimalGlobalThresholding計(jì)算圖像歸一化直方圖,pi(i=0,1,2,…,L-1)計(jì)算累積直方圖P1,令P2=1-P1計(jì)算累積灰度均值m1和m2計(jì)算全局灰度mG計(jì)算類間方差var(k)取使得var(k)最大的k值,即為Otsu閾值k*Otsu最佳全局閾值估計(jì)算法Otsu’sThresholdingThresholdingTheRoleofIlluminationThresholdingTheRoleofNoiseThresholdingTheRoleofNoise---DenosingThresholdingMethod:BasicGlobalThresholdingGlobalThresholding:WhendoesItNOTWork?AmeaningfulglobalthresholdmaynotexistImage-dependentglobalthresholdingBasicAdaptiveThresholdingBasicAdaptiveThresholdingThresholdingT=4.5ThresholdingT=5.5trueobjectboundaryBasicAdaptiveThresholdingThresholdingT=4.5ThresholdingT=5.5trueobjectboundarySplitSolutionSpatiallyadaptivethresholdingLocalizedprocessingBasicAdaptiveThresholdingThresholdingT=4ThresholdingT=7ThresholdingT=4ThresholdingT=7spatiallyadaptivethresholdselectionBasicAdaptiveThresholdingmergemergemergemergemergelocalsegmentationresultsBasicAdaptiveThresholdingAdaptiveThresholdingMultipleThresholdsColorimagesegmentationandclusteringColorimagesegmentationandclusteringRegion-BasedMethod:RegionGrowingFrom[Gonzalez&Woods]Key:similaritymeasureRegionGrowingStartfromaseed,andletitgrow(includesimilarneighborhood)Region-BasedMethod:SplitandMergeSplitandMergeIterativelysplit(non-similarregion)andmerge(similarregions)Example:quadtreeapproachFrom[Gonzalez&Woods]Region-BasedMethod:SplitandMergeoriginalimage4regions4regions(nothingtomerge)splitmergeExample:QuadtreeSplitandMergeProcedureIteration1SplitStep
spliteverynon-uniformregionto4Merge
Step
mergealluniformadjacentregionsRegion-BasedMethod:SplitandMergefromIteration113regions4regionssplitmergeExample:QuadtreeSplitandMergeProcedureIteration2SplitStep
spliteverynon-uniformregionto4Merge
Step
mergealluniformadjacentregionsRegion-BasedMethod:SplitandMergefromIteration210regionssplitmergeExample:QuadtreeSplitandMergeProcedureIteration3finalsegmentationresult2regionsSplitStep
spliteverynon-uniformregionto4Merge
Step
mergealluniformadjacentregionsRegion-BasedMethod:SplitandMergeHardProblem:TexturesSimilaritymeasuremakesthedifferenceFromProf.XinLiedgedetectionboundarydetectionclassificationandlabelingimagesegmentationBoundary-BasedMethodDetectionofDiscontinuitiesTherearethreekindsofdiscontinuitiesofintensity:points,linesandedges.Themostcommonwaytolookfordiscontinuitiesistoscanasmallmaskovertheimage.Themaskdetermineswhichkindofdiscontinuitytolookfor.
PointDetection點(diǎn)檢測(cè)(拉普拉斯)模板LineDetectionOnlyslightlymorecommonthanpointdetectionistofindaonepixelwidelineinanimage.Fordigitalimagestheonlythreepointstraightlinesareonlyhorizontal,vertical,ordiagonal(+or–45
).LineDetectionEdgeDetectionEdgeDetectionEdgeDetectionEdgeDetection:GradientOperatorsFirst-orderderivatives:Thegradientofanimagef(x,y)atlocation(x,y)isdefinedasthevector:Themagnitudeofthisvector:Thedirectionofthisvector:EdgeDetection:GradientOperatorsEdgeDetection:GradientOperatorsEdgeDetection:GradientOperatorsRobertscross-gradientoperatorsPrewittoperatorsSobeloperatorsGradientOperators:ExampleGradientOperators:ExampleGradientOperators:ExampleEdgeDetection:GradientOperatorsSecond-orderderivatives:(TheLaplacian)TheLaplacianofan2Dfunctionf(x,y)isdefinedasTwoformsinpractice:EdgeDetection:Marr-HildrethEdgeDetectorConsiderthefunction:TheLaplacianofhisTheLaplacianofaGaussiansometimesiscalledtheMexicanhatfunction.Italsocanbecomputedby
smoothingtheimagewiththeGaussiansmoothingmask,followedbyapplicationoftheLaplacianmask.TheLaplacianofaGaussian(LoG)AGaussianfunctionEdgeDetection:Marr-HildrethEdgeDetectorEdgeDetection:Marr-HildrethEdgeDetectorZerocrossingofthesecondderivativeofafunctionindicatesthepresenceofamaximaEdgeDetection:Marr-HildrethEdgeDetectorStepsSmooththeimageusingGaussianfilterEnhancetheedgesusingLaplacianoperatorZerocrossingsdenotetheedgelocationUselinearinterpolationtodeterminethesub-pixellocationoftheedgeMarr-HildrethEdgeDetector:ExampleZeroCrossingsDetectionEdgeImageZeroCrossingsMarr-HildrethEdgeDetector:ExampleSobelgradientLaplacianmaskGaussiansmoothfunctionMarr-HildrethEdgeDetector:ExampleEdgeDetection:CannyEdgeDetectorOptimaledgedetectordependingonLowerrorrate–edgesshouldnotbemissedandtheremustnotbespuriousresponsesLocalization–distancebetweenpointsmarkedbythedetectorandtheactualcenteroftheedgeshouldbeminimumResponse–OnlyoneresponsetoasingleedgeOnedimensionalformulationAssumethat2DimageshaveconstantcrosssectioninsomedirectionEdgeDetection:CannyEdgeDetectorDependingontheaboveprinciples,severaloptimaledgedetectorsarecalculatedBestapproximationtotheabovedetectorsistheFirstDerivativeofGaussianItischosenbecauseoftheeaseofcomputationin2dimensionsImplementationofCannyEdgeDetectorStep1Noiseisfilteredout–usuallyaGaussianfilterisusedWidthischosencarefullyStep2EdgestrengthisfoundoutbytakingthegradientoftheimageARobertsmaskoraSobelmaskcanbeusedImplementationofCannyEdgeDetectorStep3FindtheedgedirectionStep4ResolveedgedirectionImplementationofCannyEdgeDetectorStep5Non-maximasuppression–tracealongtheedgedirectionandsuppressanypixelvaluenotconsideredtobeanedge.GivesathinlineforedgeStep6Usedouble/hysterisisthresholdingtoeliminatestreakingCannyEdgeDetectorWewishtomarkpointsalongthecurvewherethemagnitudeisbiggest.Wecandothisbylookingforamaximumalongaslicenormaltothecurve(non-maximumsuppression).Thesepointsshouldformacurve.Therearethentwoalgorithmicissues:atwhichpointisthemaximum,andwhereisthenextone?Non-MaximumSuppressionNon-MaximumSuppressionSuppressthepixelsin‘GradientMagnitudeImage’whicharenotlocalmaximumNon-MaximumSuppressionNon-MaximumSuppressionHysteresisThresholdingHysteresisThresholdingIfthegradientatapixelisabove‘High’,declareitan‘edgepixel’Ifthegradientatapixelisbelow‘Low’,declareita‘non-edge-pixel’Ifthegradientatapixelisbetween‘Low’and‘High’thendeclareitan‘edgepixel’ifandonlyifitisconnectedtoan‘edgepixel’directlyorviapixelsbetween‘Low’and‘High’HysteresisThresholdingCannyEdgeDetector:ExampleCannySobelEdgeDetection:CannyAlgorithmEdgeLinkingandBoundaryDetection:LocalProcessingTwopropertiesofedgepointsareusefulforedgelinking:thestrength(ormagnitude)ofthedetectededgepointstheirdirections(determinedfromgradientdirections)Thisisusuallydoneinlocalneighborhoods.Adjacentedgepointswithsimilar
magnitudeanddirectionarelinked.Forexample,anedgepixelwithcoordinates(x0,y0)inapredefinedneighborhoodof(x,y)issimilartothepixelat(x,y)ifEdgeLinkingandBoundaryDetection:LocalProcessingInthisexample,wecanfindthelicenseplatecandidateafteredgelinkingprocess.HoughTransformMethodtoisolatetheshapesfromanimagePerformedafteredgedetectionNotaffectedbynoiseorgapsintheedgesTechniqueThresholdingisusedtoisolatepixelswithstrongedgegradientParametricequationofstraightlineisusedtomaptheedgepointstotheHoughparameterspacePointsofintersectionintheHoughparameterspacegivestheequationoflineonactualimageEdgeLinkingandB
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45744-2025科技評(píng)估服務(wù)質(zhì)量控制規(guī)范
- 2025年藥學(xué)專業(yè)執(zhí)業(yè)藥師考試題及答案
- 2025年學(xué)前教育專業(yè)考試試卷及答案
- 2025年網(wǎng)絡(luò)空間安全考試試題及答案
- 2025年素描考試試題及答案解析
- 2025年數(shù)字營(yíng)銷策略考試題及答案
- 2025年氣象學(xué)與環(huán)境監(jiān)測(cè)考試試題及答案
- 2025年環(huán)境科學(xué)專業(yè)碩士研究生入學(xué)試題及答案
- 2025年環(huán)境工程考試試卷及答案
- 2025年國(guó)際商務(wù)談判能力考試題及答案
- 2025年中考地理真題試題(含解析)
- 軟件知識(shí)產(chǎn)權(quán)授權(quán)管理框架與合規(guī)性研究
- 2025年山東省濰坊市中考二模地理試題及答案
- ISO9001質(zhì)量管理體系培訓(xùn)考試試題含答案
- 全新入股在股東名下協(xié)議二零二五年
- 2025-2030中國(guó)雷達(dá)告警接收機(jī)行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略研究報(bào)告
- 2025年一年級(jí)語(yǔ)文下冊(cè)期末考試檢測(cè)題蘇教版
- 游泳池水質(zhì)檢測(cè)培訓(xùn)
- 國(guó)家級(jí)突發(fā)中毒事件衛(wèi)生應(yīng)急處置隊(duì)建設(shè)規(guī)范
- 薪酬管理制度級(jí)差設(shè)計(jì)
- 2025年中考地理務(wù)必掌握的答題思路與模板
評(píng)論
0/150
提交評(píng)論