




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共8頁2025屆遼寧省營口市大石橋市水源九一貫制學校九上數學開學質量跟蹤監視模擬試題題號一二三四五總分得分A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)不等式的正整數解的個數是()A.7個 B.6個 C.4個 D.0個2、(4分)一次函數與的圖象如圖所示,有下列結論:①;②;③當時,其中正確的結論有()A.個 B.個 C.個 D.個3、(4分)如果三條線段a、b、c滿足a2=(c+b)(c﹣b),那么這三條線段組成的三角形是()A.直角三角形 B.銳角三角形 C.鈍角三角形 D.不能確定4、(4分)對角線相等且互相平分的四邊形是()A.一般四邊形 B.平行四邊形 C.矩形 D.菱形5、(4分)據統計,某住宅樓30戶居民五月份最后一周每天實行垃圾分類的戶數依次是:27,30,29,25,26,28,29,那么這組數據的中位數和眾數分別是()A.25和30 B.25和29 C.28和30 D.28和296、(4分)關于的一元二次方程有實數根,則的最大整數值是()A.1 B.0 C.-1 D.不能確定7、(4分)如圖,一直線與兩坐標軸的正半軸分別交于A、B兩點,P是線段AB上任意一點(不包括端點),過P分別作兩坐標軸的垂線與兩坐標軸圍成的矩形的周長為20,則該直線的函數表達式是()A.y=x+10 B.y=﹣x+10 C.y=x+20 D.y=﹣x+208、(4分)如圖,下面不能判定四邊形ABCD是平行四邊形的是()A.B.C.D.二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)若分式方程有增根x=2,則a=___.10、(4分)計算:=_______.11、(4分)如圖,菱形ABCD中,AC、BD交于點O,DE⊥BC于點E,連接OE,若∠ABC=120°,則∠OED=______.12、(4分)如圖,所有的四邊形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C的面積和是9,則正方形D的邊長為__________.13、(4分)若點A(2,a)關于x軸的對稱點是B(b,-3)則ab的值是.三、解答題(本大題共5個小題,共48分)14、(12分)如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若動點P從A點出發,以每秒2cm的速度沿線段AD向點D運動;動點Q從C點出發以每秒3cm的速度沿CB向B點運動,當P點到達D點時,動點P、Q同時停止運動,設點P、Q同時出發,并運動了t秒,回答下列問題:(1)BC=cm;(2)當t為多少時,四邊形PQCD成為平行四邊形?(3)當t為多少時,四邊形PQCD為等腰梯形?(4)是否存在t,使得△DQC是等腰三角形?若存在,請求出t的值;若不存在,說明理由.15、(8分)如圖,在△ABC中,AB=AC,點,在邊上,.求證:.16、(8分)某區對即將參加中考的初中畢業生進行了一次視力抽樣調查,繪制出頻數分布表和頻數分布直方圖的一部分.請根據圖表信息回答下列問題:視力頻數(人)頻率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a0.35.2≤x<5.510b(1)本次調查的樣本為,樣本容量為;(2)在頻數分布表中,組距為,a=,b=,并將頻數分布直方圖補充完整;(3)若視力在4.6以上(含4.6)均屬正常,計算抽樣中視力正常的百分比.17、(10分)某單位招聘員工,采取筆試與面試相結合的方式進行,兩項成績的原始分均為100分.前6名選手的得分如下:根據規定,筆試成績和面試成績分別按一定的百分比折和成綜合成績(綜合成績的滿分仍為100分)(1)這6名選手筆試成績的中位數是分,眾數是分.(2)現得知1號選手的綜合成績為88分,求筆試成績和面試成績各占的百分比.(3)求出其余五名選手的綜合成績,并以綜合成績排序確定前兩名人選.18、(10分)如圖,△ABC中,A(﹣1,1),B(﹣4,2),C(﹣3,4).(1)在網格中畫出△ABC向右平移5個單位后的圖形△A1B1C1;(2)在網格中畫出△ABC關于原點O成中心對稱后的圖形△A2B2C2;(3)在x軸上找一點P使PA+PB的值最小請直接寫出點P的坐標.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)若方程(k為常數)有兩個不相等的實數根,則k取值范圍為.20、(4分)如圖,四邊形ABCD是菱形,點A,B,C,D的坐標分別是(m,0),(0,n),(1,0),(0,2),則mn=_____.21、(4分)在中,,,點在上,.若點是邊上異于點的另一個點,且,則的值為______.22、(4分)在數學課上,老師提出如下問題:如圖1,將銳角三角形紙片ABC(BC>AC)經過兩次折疊,得到邊AB,BC,CA上的點D,E,F.使得四邊形DECF恰好為菱形.小明的折疊方法如下:如圖2,(1)AC邊向BC邊折疊,使AC邊落在BC邊上,得到折痕交AB于D;(2)C點向AB邊折疊,使C點與D點重合,得到折痕交BC邊于E,交AC邊于F.老師說:“小明的作法正確.”請回答:小明這樣折疊的依據是______________________________________.23、(4分)已知,是一元二次方程的兩個實數根,則的值是______.二、解答題(本大題共3個小題,共30分)24、(8分)通過類比聯想,引申拓展研究典型題目,可達到解一題知一類的目的.下面是一個案例,先閱讀再解決后面的問題:原題:如圖1,點E,F分別在正方形ABCD的邊BC,CD上,∠EAF=45°,連接EF解題分析:由于AB=AD,我們可以延長CD到點G,使DG=BE,易得∠ABE=∠ADG=90°,可證ΔABE?ΔADG.再證明ΔAFG?ΔAFE,得EF=FG=DG+FD=BE+DF.問題(1):如圖2,在四邊形ABCD中,AB=AD,∠B=∠D=90°,E,F分別是邊BC,CD上的點,且∠EAF=12∠BAD問題(2):如圖3,在四邊形ABCD中,∠B=∠D=90°,∠BAD=120°,AB=AD=1,點E,F分別在四邊形ABCD的邊BC,CD上的點,且∠EAF=60°,求此時ΔCEF的周長25、(10分)某學習小組10名學生的某次數學測驗成績統計表如下:成績(分)60708090人數(人)13x4(1)填空:x=;此學習小組10名學生成績的眾數是;(2)求此學習小組的數學平均成績.26、(12分)武漢某文化旅游公司為了在軍運會期間更好地宣傳武漢,在工廠定制了一批具有濃郁的武漢特色的商品.為了了解市場情況,該公司向市場投放,型商品共件進行試銷,型商品成本價元/件,商品成本價元/件,其中型商品的件數不大于型的件數,且不小于件,已知型商品的售價為元/件,型商品的售價為元/件,且全部售出.設投放型商品件,該公司銷售這批商品的利潤元.(1)直接寫出與之間的函數關系式:_______;(2)為了使這批商品的利潤最大,該公司應該向市場投放多少件型商品?最大利潤是多少?(3)該公司決定在試銷活動中每售出一件型商品,就從一件型商品的利潤中捐獻慈善資金元,當該公司售完這件商品并捐獻資金后獲得的最大收益為元時,求的值.
參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、B【解析】
先解不等式求得不等式的解集,再確定正整數解即可.【詳解】3(x+1)>2(2x+1)-63x+3>4x+2-63x-4x>2-6-3-x>-7x<7∴不等式的正整數解為1、2、3、4、5、6,共6個.故選B.本題考查了求一元一次不等式的正整數解,正確求得不等式的解集是解決本題的關鍵.2、B【解析】
利用一次函數的性質分別判斷后即可確定正確的選項.【詳解】解:①∵的圖象與y軸的交點在負半軸上,∴a<0,故①錯誤;②∵的圖象從左向右呈下降趨勢,∴k<0,故②錯誤;③兩函數圖象的交點橫坐標為4,當x<4時,在的圖象的上方,即y1>y2,故③正確;故選:B.本題考查了一次函數與一元一次不等式的關系:從函數的角度看,就是尋求使一次函數y=kx+b的值大于(或小于)0的自變量x的取值范圍;從函數圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標.利用數形結合是解題的關鍵.3、A【解析】
∵a2=(c+b)(cb),∴a2=c2﹣b2,即a2+b2=c2,∴這三條線段組成的三角形是直角三角形.故選A.本題考查勾股定理的逆定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.4、C【解析】
由對角線互相平分,可得此四邊形是平行四邊形;又由對角線相等,可得是矩形;【詳解】∵四邊形的對角線互相平分,∴此四邊形是平行四邊形;又∵對角線相等,∴此四邊形是矩形;故選B.考查矩形的判定,常見的判定方法有:1.有一個角是直角的平行四邊形是矩形.2.對角線相等的平行四邊形是矩形.3.有三個角是直角的四邊形是矩形.5、D【解析】【分析】根據中位數和眾數的定義進行求解即可得答案.【詳解】對這組數據重新排列順序得,25,26,27,28,29,29,30,處于最中間是數是28,∴這組數據的中位數是28,在這組數據中,29出現的次數最多,∴這組數據的眾數是29,故選D.【點睛】本題考查了中位數和眾數的概念,熟練掌握眾數和中位數的概念是解題的關鍵.一組數據中出現次數最多的數據叫做眾數,一組數據按從小到大(或從大到小)排序后,位于最中間的數(或中間兩數的平均數)是這組數據的中位數.6、C【解析】
利用一元二次方程的定義和判別式的意義得到a≠0且△=(﹣1)2﹣4a≥0,求出a的范圍后對各選項進行判斷.【詳解】解:根據題意得a≠0且△=(﹣1)2﹣4a≥0,解得a≤且a≠0,所以a的最大整數值是﹣1.故選:C.本題考查了一元二次方程的定義和根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2﹣4ac有如下關系:當△>0時,方程有兩個不相等的實數根;當△=0時,方程有兩個相等的實數根;當△<0時,方程無實數根.7、B【解析】
設點P的坐標為(x,y),根據矩形的性質得到|x|+|y|=10,變形得到答案.【詳解】設點P的坐標為(x,y),∵矩形的周長為20,∴|x|+|y|=10,即x+y=10,∴該直線的函數表達式是y=﹣x+10,故選:B.本題考查的是一次函數解析式的求法,掌握矩形的性質、靈活運用待定系數法求一次函數解析式是解題的關鍵.8、C【解析】
根據平行四邊形的判定:①兩組對邊分別平行的四邊形是平行四邊形;②兩組對邊分別相等的四邊形是平行四邊形;③兩組對角分別相等的四邊形是平行四邊形;④對角線互相平分的四邊形是平行四邊形;⑤一組對邊平行且相等的四邊形是平行四邊形判斷即可.【詳解】根據平行四邊形的判定,A、B、D均符合是平行四邊形的條件,C則不能判定是平行四邊形.故選C.此題主要考查了學生對平行四邊形的判定的掌握情況.對于判定定理:“一組對邊平行且相等的四邊形是平行四邊形.”應用時要注意必須是“一組”,而“一組對邊平行且另一組對邊相等”的四邊形不一定是平行四邊形.二、填空題(本大題共5個小題,每小題4分,共20分)9、﹣2.【解析】
先化簡分式方程,再根據分式方程有增根的條件代入方程,最后求出方程的解即可.【詳解】去分母得:x+2+ax=3x﹣6,把x=2代入得:4+2a=0,解得:a=﹣2,故答案為:﹣2.此題考查分式方程的解,解題關鍵在于掌握運算法則10、2+1【解析】試題解析:=.故答案為.11、30°【解析】
根據直角三角形的斜邊中線性質可得OE=BE=OD,根據菱形性質可得∠DBE=∠ABC=60°,從而得到∠OEB度數,再依據∠OED=90°-∠OEB即可.【詳解】∵四邊形ABCD是菱形,
∴O為BD中點,∠DBE=∠ABC=60°.
∵DE⊥BC,
∴在Rt△BDE中,OE=BE=OD,
∴∠OEB=∠OBE=60°.
∴∠OED=90°-60°=30°.
故答案是:30°考查了菱形的性質、直角三角形斜邊中線的性質,解決這類問題的方法是四邊形轉化為三角形.12、3【解析】
由勾股定理可知,兩只角邊的平方和等于斜邊的平方,在此題中,各邊的平方可以代表每個正方形的面積.建立等式,通過移項可得正方形D的面積,再開平方得到邊長.【詳解】每個正方形的面積=直角三角形各邊的平方再由勾股定理可聯立等式即,又正方形A、B、C的面積和是9則,所以,所以正方形D的邊長為本題考察了直角三角形的勾股定理的應用,務必清楚的是題中每個正方行的面積=直角三角形各邊的平方.13、1【解析】根據關于x軸對稱的點,橫坐標相同,縱坐標互為相反數得出a,b的值,從而得出ab.解答:解:∵點A(2,a)關于x軸的對稱點是B(b,-3),∴a=3,b=2,∴ab=1.故答案為1.三、解答題(本大題共5個小題,共48分)14、(1)18cm(2)當t=125秒時四邊形PQCD為平行四邊形(3)當t=245時,四邊形PQCD為等腰梯形(4)存在t,t的值為103【解析】試題分析:(1)作DE⊥BC于E,則四邊形ABED為矩形.在直角△CDE中,已知DC、DE的長,根據勾股定理可以計算EC的長度,根據BC=BE+EC即可求出BC的長度;(2)由于PD∥QC,所以當PD=QC時,四邊形PQCD為平行四邊形,根據PD=QC列出關于t的方程,解方程即可;(3)首先過D作DE⊥BC于E,可求得EC的長,又由當PQ=CD時,四邊形PQCD為等腰梯形,可求得當QC-PD=QC-EF=QF+EC=2CE,即3t-(12-2t)=12時,四邊形PQCD為等腰梯形,解此方程即可求得答案;(4)因為三邊中,每兩條邊都有相等的可能,所以應考慮三種情況.結合路程=速度×時間求得其中的有關的邊,運用等腰三角形的性質和解直角三角形的知識求解.試題解析:根據題意得:PA=2t,CQ=3t,則PD=AD-PA=12-2t.(1)如圖,過D點作DE⊥BC于E,則四邊形ABED為矩形,DE=AB=8cm,AD=BE=12cm,在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,∴EC=DC∴BC=BE+EC=18cm.(2)∵AD∥BC,即PD∥CQ,∴當PD=CQ時,四邊形PQCD為平行四邊形,即12-2t=3t,解得t=125故當t=125(3)如圖,過D點作DE⊥BC于E,則四邊形ABED為矩形,DE=AB=8cm,AD=BE=12cm,當PQ=CD時,四邊形PQCD為等腰梯形.過點P作PF⊥BC于點F,過點D作DE⊥BC于點E,則四邊形PDEF是矩形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△CDE中,PQ=CDPF=DE∴Rt△PQF≌Rt△CDE(HL),∴QF=CE,∴QC-PD=QC-EF=QF+EC=2CE,即3t-(12-2t)=12,解得:t=245即當t=245(4)△DQC是等腰三角形時,分三種情況討論:①當QC=DC時,即3t=10,∴t=103②當DQ=DC時,3t∴t=4;③當QD=QC時,3t×6∴t=259故存在t,使得△DQC是等腰三角形,此時t的值為103秒或4秒或25考點:四邊形綜合題.15、見解析【解析】試題分析:證明△ABE≌△ACD即可.試題解析:法1:∵AB=AC,∴∠B=∠C,∵AD=CE,∴∠ADE=∠AED,∴△ABE≌△ACD,∴BE=CD,∴BD=CE,法2:如圖,作AF⊥BC于F,∵AB=AC,∴BF=CF,∵AD=AE,∴DF=EF,∴BF-DF=CF-EF,即BD=CE.16、(1)從中抽取的200名即將參加中考的初中畢業生的視力;200;(2)0.3;60;0.05,見解析;(3)70%.【解析】
(1)根據樣本的概念、樣本容量的概念解答;
(2)根據組距的概念求出組距,根據樣本容量和頻率求出a,根據樣本容量和頻數求出b,將頻數分布直方圖補充完整;
(3)根據頻數分布直方圖求出抽樣中視力正常的百分比.【詳解】(1)樣本容量為:20÷0.1=200,本次調查的樣本為從中抽取的200名即將參加中考的初中畢業生的視力,故答案為:從中抽取的200名即將參加中考的初中畢業生的視力;200;(2)組距為0.3,a=200×0.3=60,b=10÷200=0.05,故答案為:0.3;60;0.05;頻數分布直方圖補充完整如圖所示;(3)抽樣中視力正常的百分比為:×100%=70%.本題考查的是讀頻數分布直方圖的能力和利用統計圖獲取信息的能力,利用統計圖獲取信息時,必須認真觀察、分析、研究統計圖,才能作出正確的判斷和解決問題.17、(1)84.5,84;(2)筆試成績和面試成績各占的百分比是40%,60%;(3)2號選手的綜合成績是89.6(分),3號選手的綜合成績是85.2(分),4號選手的綜合成績是90(分),5號選手的綜合成績是81.6(分),6號選手的綜合成績是83(分),綜合成績排序前兩名人選是4號和2號.【解析】
(1)根據中位數和眾數的定義即把這組數據從小到大排列,再找出最中間兩個數的平均數就是中位數,再找出出現的次數最多的數即是眾數;(2)先設筆試成績和面試成績各占的百分百是x,y,根據題意列出方程組,求出x,y的值即可;(3)根據筆試成績和面試成績各占的百分比,分別求出其余五名選手的綜合成績,即可得出答案.【詳解】(1)把這組數據從小到大排列為,80,84,84,85,90,92,最中間兩個數的平均數是(84+85)÷2=84.5(分),則這6名選手筆試成績的中位數是84.5,84出現了2次,出現的次數最多,則這6名選手筆試成績的眾數是84;故答案為:84.5,84;(2)設筆試成績和面試成績各占的百分百是x,y,根據題意得:,解得:,故筆試成績和面試成績各占的百分比是40%,60%;(3)2號選手的綜合成績是92×0.4+88×0.6=89.6(分),3號選手的綜合成績是84×0.4+86×0.6=85.2(分),4號選手的綜合成績是90×0.4+90×0.6=90(分),5號選手的綜合成績是84×0.4+80×0.6=81.6(分),6號選手的綜合成績是80×0.4+85×0.6=83(分),則綜合成績排序前兩名人選是4號和2號此題考查了加權平均數,用到的知識點是中位數、眾數、加權平均數的計算公式,關鍵靈活運用有關知識列出算式.18、(1)見解析;(2)見解析;(3)(-1,0),圖見解析【解析】
(1)分別作出A,B,C的對應點A1,B1,C1即可.(2)分別作出A,B,C的對應點A2,B2,C2即可.(3)作點關于x軸的對稱點A′,連接BA′交X軸于點P,點P即為所求.【詳解】(1)△A1B1C1如圖所示.(2)△A2B2C2如圖所示.(3)點P即為所求.本題考查作圖﹣旋轉變換,平移變換,軸對稱最短問題等知識,解題的關鍵是熟練掌握基本知識.一、填空題(本大題共5個小題,每小題4分,共20分)19、【解析】
根據方程的系數結合根的判別式即可得出關于k的一元一次不等式,解不等式即可得出結論,【詳解】解:∵方程(k為常數)的兩個不相等的實數根,∴>0,且,解得:k<1,故答案為:.本題主要考查了根的判別式,掌握根的判別式是解題的關鍵.20、1.【解析】分析:根據菱形的對角線互相垂直平分得出OA=OC,OB=OD,得出m和n的值,從而得出答案.詳解:∵四邊形ABCD是菱形,∴OA=OC,OB=OD,∴m=-1,n=-1,∴mn=1.點睛:本題主要考查的是菱形的性質,屬于基礎題型.根據菱形的性質得出OA=OC,OB=OD是解題的關鍵.21、24或21或【解析】
情況1:連接EP交AC于點H,依據先證明是菱形,再根據菱形的性質可得到∠ECH=∠PCH=10°,然后依據SAS可證明△ECH≌△PCH,則∠EHC=∠PHC=90°,最后依據EP=2EH=2sin10°?EC求解即可.情況2:如圖2所示:△ECP為等腰直角三角形,則=EC=2.此時,=24
情況2:如圖2:過點P′作P′F⊥BC.通過解直角三角形可以解得FC,EF,再在Rt△P′EF中,利用勾股定理可以求得.【詳解】解:情況1:如圖所示:連接EP交AC于點H.
∵在中,∴是菱形∵菱形ABCD中,∠B=10°,
∴∠BCD=120°,∠ECH=∠PCH=10°.
在△ECH和△PCH中,
∴△ECH≌△PCH.
∴∠EHC=∠PHC=90°,EH=PH.
∴EP=2EH=2sin10°?EC=2××2=1.∴=21
情況2:如圖2所示:△ECP為等腰直角三角形,則=EC=2.∴=24
情況2:如圖2:過點P′作P′F⊥BC.
∵P′C=2,BC=4,∠B=10°,
∴P′C⊥AB.
∴∠BCP′=20°.
∴FC=×2=2,P′F=,EF=2-2.∴=,
故答案為:24或21或.本題主要考查的是菱形的性質,全等三角形的判定和性質,以及解直角三角形和勾股定理得結合,是綜合性題目,難度較大.22、對角線互相垂直平分的四邊形是菱形【解析】
解:如圖,連接DF、DE.根據折疊的性質知,CD⊥EF,且OD=OC,OE=OF.則四邊形DECF恰為菱形.所以小明這樣折疊的依據是:對角線互相垂直平分的四邊形是菱形.23、1【解析】
根據一元二次方程的根與系數的關系即可解答.【詳解】解:根據一元二次方程的根與系數關系可得:,所以可得故答案為1.本題主要考查一元二次方程的根與系數關系,這是一元二次方程的重點知識,必須熟練掌握.二、解答題(本大題共3個小題,共30分)24、(1)EF=BE+FD,見解析;(2)ΔCEF周長為23【解析】
(1)在CD的延長線上截取DG=BE,連接AG,證出△ABE≌△ADG,根據全等三角形的性質得出BE=DG,再證明△AEF≌△AGF,得EF=FG,即可得出答案;
(2)連接AC,證明△ABC≌△ADC(SS
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- windows考試題及答案公式
- taptap考試題目及答案
- r 語言考試題及答案
- e支部考試題及答案
- b票考試題及答案
- 明星們粉絲群管理制度
- 手術信息化質量管理制度
- 星級賓館衛生管理制度
- 土石方機械設備管理制度
- 專家費電子簽名管理制度
- 地生中考模擬試題及答案
- 中醫調理高血壓課件
- 商業招商運營管理制度
- 加工巖板合同協議書
- 2025-2030中國經顱磁刺激儀(TMS)行業市場現狀供需分析及投資評估規劃分析研究報告
- 2025-2030中國碳酸鎂行業市場發展分析及發展趨勢與投資前景研究報告
- 《飛向太空的航程》課件【中職專用】高一語文(高教版2023基礎模塊下冊)
- 2025蘭州資源環境職業技術大學輔導員考試試題及答案
- 2025年下半年山西焦煤西山煤電集團公司招聘270人易考易錯模擬試題(共500題)試卷后附參考答案
- 上海中考:地理高頻考點
- 道路工程平移合同協議
評論
0/150
提交評論