




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024年人教版中學七7年級下冊數學期末解答題壓軸題含答案一、解答題1.如圖是一塊正方形紙片.(1)如圖1,若正方形紙片的面積為1dm2,則此正方形的對角線AC的長為dm.(2)若一圓的面積與這個正方形的面積都是2πcm2,設圓的周長為C圓,正方形的周長為C正,則C圓C正(填“=”或“<”或“>”號)(3)如圖2,若正方形的面積為16cm2,李明同學想沿這塊正方形邊的方向裁出一塊面積為12cm2的長方形紙片,使它的長和寬之比為3:2,他能裁出嗎?請說明理由?2.如圖,用兩個邊長為15的小正方形拼成一個大的正方形,(1)求大正方形的邊長?(2)若沿此大正方形邊的方向剪出一個長方形,能否使剪出的長方形紙片的長寬之比為4:3,且面積為720cm2?3.如圖用兩個邊長為cm的小正方形紙片拼成一個大的正方形紙片,沿著大正方形紙片的邊的方向截出一個長方形紙片,能否使截得的長方形紙片長寬之比為,且面積為cm2?請說明理由.4.小麗想用一塊面積為的正方形紙片,如圖所示,沿著邊的方向裁出一塊面積為的長方形紙片,使它的長是寬的2倍.她不知能否裁得出來,正在發愁.小明見了說:“別發愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意小明的說法嗎?你認為小麗能用這塊紙片裁出符合要求的紙片嗎?為什么?5.有一塊正方形鋼板,面積為16平方米.(1)求正方形鋼板的邊長.(2)李師傅準備用它裁剪出一塊面積為12平方米的長方形工件,且要求長寬之比為,問李師傅能辦到嗎?若能,求出長方形的長和寬;若不能,請說明理由.(參考數據:,).二、解答題6.如圖,直線HDGE,點A在直線HD上,點C在直線GE上,點B在直線HD、GE之間,∠DAB=120°.(1)如圖1,若∠BCG=40°,求∠ABC的度數;(2)如圖2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比較∠B,∠F的大小;(3)如圖3,點P是線段AB上一點,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的數量關系,并說明理由.7.已知直線AB//CD,點P、Q分別在AB、CD上,如圖所示,射線PB按逆時針方向以每秒12°的速度旋轉至PA便立即回轉,并不斷往返旋轉;射線QC按逆時針方向每秒3°旋轉至QD停止,此時射線PB也停止旋轉.(1)若射線PB、QC同時開始旋轉,當旋轉時間10秒時,PB'與QC'的位置關系為;(2)若射線QC先轉15秒,射線PB才開始轉動,當射線PB旋轉的時間為多少秒時,PB′//QC′.8.已知,定點,分別在直線,上,在平行線,之間有一動點.(1)如圖1所示時,試問,,滿足怎樣的數量關系?并說明理由.(2)除了(1)的結論外,試問,,還可能滿足怎樣的數量關系?請畫圖并證明(3)當滿足,且,分別平分和,①若,則__________°.②猜想與的數量關系.(直接寫出結論)9.綜合與探究(問題情境)王老師組織同學們開展了探究三角之間數量關系的數學活動(1)如圖1,,點、分別為直線、上的一點,點為平行線間一點,請直接寫出、和之間的數量關系;(問題遷移)(2)如圖2,射線與射線交于點,直線,直線分別交、于點、,直線分別交、于點、,點在射線上運動,①當點在、(不與、重合)兩點之間運動時,設,.則,,之間有何數量關系?請說明理由.②若點不在線段上運動時(點與點、、三點都不重合),請你畫出滿足條件的所有圖形并直接寫出,,之間的數量關系.10.綜合與實踐背景閱讀:在同一平面內,兩條不重合的直線的位置關系有相交、平行,若兩條不重合的直線只有一個公共點,我們就說這兩條直線相交,若兩條直線不相交,我們就說這兩條直線互相平行兩條直線的位置關系的性質和判定是幾何的重要知識,是初中階段幾何合情推理的基礎.已知:AM∥CN,點B為平面內一點,AB⊥BC于B.問題解決:(1)如圖1,直接寫出∠A和∠C之間的數量關系;(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,則∠EBC=.三、解答題11.[感知]如圖①,,求的度數.小樂想到了以下方法,請幫忙完成推理過程.解:(1)如圖①,過點P作.∴(_____________),∴,∴________(平行于同一條直線的兩直線平行),∴_____________(兩直線平行,同旁內角互補),∴,∴,∴,即.[探究]如圖②,,求的度數;[應用](1)如圖③,在[探究]的條件下,的平分線和的平分線交于點G,則的度數是_________o.(2)已知直線,點A,B在直線a上,點C,D在直線b上(點C在點D的左側),連接,若平分平分,且所在的直線交于點E.設,請直接寫出的度數(用含的式子表示).12.如圖1,E點在上,..(1)求證:(2)如圖2,平分,與的平分線交于H點,若比大,求的度數.(3)保持(2)中所求的的度數不變,如圖3,平分平分,作,則的度數是否改變?若不變,請直接寫出答案;若改變,請說明理由.13.如圖1,點O在上,,射線交于點C,已知m,n滿足:.(1)試說明//的理由;(2)如圖2,平分,平分,直線、交于點E,則______;(3)若將繞點O逆時針旋轉,其余條件都不變,在旋轉過程中,的度數是否發生變化?請說明你的結論.14.如圖1,為直線上一點,過點作射線,將一直角三角板()的直角頂點放在點處,一邊在射線上,另一邊與都在直線的上方,將圖1中的三角板繞點以每秒3°的速度沿順時針方向旋轉一周.(1)幾秒后與重合?(2)如圖2,經過秒后,,求此時的值.(3)若三角板在轉動的同時,射線也繞點以每秒6°的速度沿順時針方向旋轉一周,那么經過多長時間與重合?請畫圖并說明理由.(4)在(3)的條件下,求經過多長時間平分?請畫圖并說明理由.15.問題情境(1)如圖1,已知,,,求的度數.佩佩同學的思路:過點作,進而,由平行線的性質來求,求得________.問題遷移(2)圖2.圖3均是由一塊三角板和一把直尺拼成的圖形,三角板的兩直角邊與直尺的兩邊重合,,,與相交于點,有一動點在邊上運動,連接,,記,.①如圖2,當點在,兩點之間運動時,請直接寫出與,之間的數量關系;②如圖3,當點在,兩點之間運動時,與,之間有何數量關系?請判斷并說明理由;拓展延伸(3)當點在,兩點之間運動時,若,的角平分線,相交于點,請直接寫出與,之間的數量關系.四、解答題16.如圖,平分,平分,請判斷與的位置關系并說明理由;如圖,當且與的位置關系保持不變,移動直角頂點,使,當直角頂點點移動時,問與否存在確定的數量關系?并說明理由.如圖,為線段上一定點,點為直線上一動點且與的位置關系保持不變,①當點在射線上運動時(點除外),與有何數量關系?猜想結論并說明理由.②當點在射線的反向延長線上運動時(點除外),與有何數量關系?直接寫出猜想結論,不需說明理由.17.直線MN與直線PQ垂直相交于O,點A在射線OP上運動,點B在射線OM上運動,A、B不與點O重合,如圖1,已知AC、BC分別是∠BAP和∠ABM角的平分線,(1)點A、B在運動的過程中,∠ACB的大小是否發生變化?若發生變化,請說明理由;若不發生變化,試求出∠ACB的大小.(2)如圖2,將△ABC沿直線AB折疊,若點C落在直線PQ上,則∠ABO=________,如圖3,將△ABC沿直線AB折疊,若點C落在直線MN上,則∠ABO=________(3)如圖4,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及其反向延長線交于E、F,則∠EAF=;在△AEF中,如果有一個角是另一個角的倍,求∠ABO的度數.18.如圖1,已知線段AB、CD相交于點O,連接AC、BD,我們把形如圖1的圖形稱之為“8字形”.如圖2,∠CAB和∠BDC的平分線AP和DP相交于點P,并且與CD、AB分別相交于M、N.試解答下列問題:(1)仔細觀察,在圖2中有個以線段AC為邊的“8字形”;(2)在圖2中,若∠B=96°,∠C=100°,求∠P的度數;(3)在圖2中,若設∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間存在著怎樣的數量關系(用α、β表示∠P),并說明理由;(4)如圖3,則∠A+∠B+∠C+∠D+∠E+∠F的度數為.19.在中,,,點在直線上運動(不與點、重合),點在射線上運動,且,設.(1)如圖①,當點在邊上,且時,則__________,__________;(2)如圖②,當點運動到點的左側時,其他條件不變,請猜想和的數量關系,并說明理由;(3)當點運動到點的右側時,其他條件不變,和還滿足(2)中的數量關系嗎?請在圖③中畫出圖形,并給予證明.(畫圖痕跡用黑色簽字筆加粗加黑)20.如圖,△ABC和△ADE有公共頂點A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,則∠EAC=;(2)如圖1,過AC上一點O作OG⊥AC,分別交AB、AD、AE于點G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求線段OF的長;②如圖2,∠AFO的平分線和∠AOF的平分線交于點M,∠FHD的平分線和∠OGB的平分線交于點N,∠N+∠M的度數是否發生變化?若不變,求出其度數;若改變,請說明理由.【參考答案】一、解答題1.(1);(2)<;(3)不能;理由見解析.【分析】(1)由正方形面積,易求得正方形邊長,再由勾股定理求對角線長;(2)由圓面積公式,和正方形面積可求周長,比較兩數大小可以采用比商法;(3)采解析:(1);(2)<;(3)不能;理由見解析.【分析】(1)由正方形面積,易求得正方形邊長,再由勾股定理求對角線長;(2)由圓面積公式,和正方形面積可求周長,比較兩數大小可以采用比商法;(3)采用方程思想求出長方形的長邊,與正方形邊長比較大小即可.【詳解】解:(1)由已知AB2=1,則AB=1,由勾股定理,AC=;故答案為:.(2)由圓面積公式,可得圓半徑為,周長為,正方形周長為4.;即C圓<C正;故答案為:<(3)不能;由已知設長方形長和寬為3xcm和2xcm∴長方形面積為:2x?3x=12解得x=∴長方形長邊為3>4∴他不能裁出.【點睛】本題主要考查了算術平方根在正方形、圓、長方形面積中的應用,靈活的進行算術平方根的計算與無理數大小比較是解題的關鍵.2.(1)30;(2)不能.【解析】【分析】(1)根據已知正方形的面積求出大正方形的面積,即可求出邊長;(2)先求出長方形的邊長,再判斷即可.【詳解】解:(1)∵大正方形的面積是:∴大正解析:(1)30;(2)不能.【解析】【分析】(1)根據已知正方形的面積求出大正方形的面積,即可求出邊長;(2)先求出長方形的邊長,再判斷即可.【詳解】解:(1)∵大正方形的面積是:∴大正方形的邊長是:=30;(2)設長方形紙片的長為4xcm,寬為3xcm,則4x?3x=720,解得:x=,4x==>30,所以沿此大正方形邊的方向剪出一個長方形,不能使剪出的長方形紙片的長寬之比為4:3,且面積為720cm2.故答案為(1)30;(2)不能.【點睛】本題考查算術平方根,解題的關鍵是能根據題意列出算式.3.不能截得長寬之比為,且面積為cm2的長方形紙片,見解析【分析】根據拼圖求出大正方形的邊長,再根據長方形的長、寬之比為3:2,計算長方形的長與寬進行驗證即可.【詳解】解:不能,因為大正方形紙解析:不能截得長寬之比為,且面積為cm2的長方形紙片,見解析【分析】根據拼圖求出大正方形的邊長,再根據長方形的長、寬之比為3:2,計算長方形的長與寬進行驗證即可.【詳解】解:不能,因為大正方形紙片的面積為()2+()2=36(cm2),所以大正方形的邊長為6cm,設截出的長方形的長為3bcm,寬為2bcm,則6b2=30,所以b=(取正值),所以3b=3=>,所以不能截得長寬之比為3:2,且面積為30cm2的長方形紙片.【點睛】本題考查了算術平方根,理解算術平方根的意義是正確解答的關鍵.4.不同意,理由見解析【分析】先求得正方形的邊長,然后設設長方形寬為,長為,然后依據矩形的面積為20列方程求得的值,從而得到矩形的邊長,從而可作出判斷.【詳解】解:不同意,因為正方形的面積為,解析:不同意,理由見解析【分析】先求得正方形的邊長,然后設設長方形寬為,長為,然后依據矩形的面積為20列方程求得的值,從而得到矩形的邊長,從而可作出判斷.【詳解】解:不同意,因為正方形的面積為,故邊長為設長方形寬為,則長為長方形面積∴,解得(負值舍去)長為即長方形的長大于正方形的邊長,所以不能裁出符合要求的長方形紙片【點睛】本題主要考查的是算術平方根的性質,熟練掌握算術平方根的性質是解題的關鍵.5.(1)4米(2)見解析【分析】(1)根據正方形邊長與面積間的關系求解即可;(2)設長方形的長寬分別為米、米,由其面積可得x值,比較長方形的長和寬與正方形邊長的大小可得結論.【詳解】解解析:(1)4米(2)見解析【分析】(1)根據正方形邊長與面積間的關系求解即可;(2)設長方形的長寬分別為米、米,由其面積可得x值,比較長方形的長和寬與正方形邊長的大小可得結論.【詳解】解:(1)正方形的面積是16平方米,正方形鋼板的邊長是米;(2)設長方形的長寬分別為米、米,則,,,,,長方形長是米,而正方形的邊長為4米,所以李師傅不能辦到.【點睛】本題考查了算術平方根的實際應用,靈活的利用算術平方根表示正方形和長方形的邊長是解題的關鍵.二、解答題6.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點B作BMHD,則HDGEBM,根據平行線的性質求得∠ABM與∠CBM,便可求得最后解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點B作BMHD,則HDGEBM,根據平行線的性質求得∠ABM與∠CBM,便可求得最后結果;(2)過B作BPHDGE,過F作FQHDGE,由平行線的性質得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分線的性質和已知角的度數分別求得∠HAF,∠FCG,最后便可求得結果;(3)過P作PKHDGE,先由平行線的性質證明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根據角平分線求得∠NPC與∠PCN,由后由三角形內角和定理便可求得結果.【詳解】解:(1)過點B作BMHD,則HDGEBM,如圖1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)過B作BPHDGE,過F作FQHDGE,如圖2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)過P作PKHDGE,如圖3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即:∠N=90°﹣∠HAP.【點睛】本題考查了角平分線的定義,平行線性質和判定:兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數形結合思想與方程思想的應用,理清各角度之間的關系是解題的關鍵,也是本題的難點.7.(1)PB′⊥QC′;(2)當射線PB旋轉的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉10秒時,∠BPB′和∠CQC′的度數,設PB′與QC′交于O,過O作OE∥AB,根解析:(1)PB′⊥QC′;(2)當射線PB旋轉的時間為5秒或25秒或45秒時,PB′∥QC′【分析】(1)求出旋轉10秒時,∠BPB′和∠CQC′的度數,設PB′與QC′交于O,過O作OE∥AB,根據平行線的性質求得∠POE和∠QOE的度數,進而得結論;(2)分三種情況:①當0<t≤15時,②當15<t≤30時,③當30<t<45時,根據平行線的性質,得出角的關系,列出t的方程便可求得旋轉時間.【詳解】解:(1)如圖1,當旋轉時間30秒時,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當0<t≤15時,如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當15<t≤30時,如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當30<t≤45時,如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當射線PB旋轉的時間為5秒或25秒或45秒時,PB′∥QC′.【點睛】本題主要考查了平行線的性質,第(1)題關鍵是作平行線,第(2)題關鍵是分情況討論,運用方程思想解決幾何問題.8.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點是平行線,之間解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點是平行線,之間有一動點,因此需要對點的位置進行分類討論:如圖1,當點在的左側時,,,滿足數量關系為:;(2)當點在的右側時,,,滿足數量關系為:;(3)①若當點在的左側時,;當點在的右側時,可求得;②結合①可得,由,得出;可得,由,得出.【詳解】解:(1)如圖1,過點作,,,,,,;(2)如圖2,當點在的右側時,,,滿足數量關系為:;過點作,,,,,,;(3)①如圖3,若當點在的左側時,,,,分別平分和,,,;如圖4,當點在的右側時,,,;故答案為:或30;②由①可知:,;,.綜合以上可得與的數量關系為:或.【點睛】本題主要考查了平行線的性質,平行公理和及推論等知識點,作輔助線后能求出各個角的度數,是解此題的關鍵.9.(1);(2)①,理由見解析;②圖見解析,或【分析】(1)作PQ∥EF,由平行線的性質,即可得到答案;(2)①過作交于,由平行線的性質,得到,,即可得到答案;②根據題意,可對點P進行分類討論解析:(1);(2)①,理由見解析;②圖見解析,或【分析】(1)作PQ∥EF,由平行線的性質,即可得到答案;(2)①過作交于,由平行線的性質,得到,,即可得到答案;②根據題意,可對點P進行分類討論:當點在延長線時;當在之間時;與①同理,利用平行線的性質,即可求出答案.【詳解】解:(1)作PQ∥EF,如圖:∵,∴,∴,,∵∴;(2)①;理由如下:如圖,過作交于,∵,∴,∴,,∴;②當點在延長線時,如備用圖1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;當在之間時,如備用圖2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【點睛】本題考查了平行線的性質,解題的關鍵是熟練掌握兩直線平行同旁內角互補,兩直線平行內錯角相等,從而得到角的關系.10.(1);(2)見解析;(3)105°【分析】(1)通過平行線性質和直角三角形內角關系即可求解.(2)過點B作BG∥DM,根據平行線找角的聯系即可求解.(3)利用(2)的結論,結合角平分線性質解析:(1);(2)見解析;(3)105°【分析】(1)通過平行線性質和直角三角形內角關系即可求解.(2)過點B作BG∥DM,根據平行線找角的聯系即可求解.(3)利用(2)的結論,結合角平分線性質即可求解.【詳解】解:(1)如圖1,設AM與BC交于點O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案為:∠A+∠C=90°;(2)證明:如圖2,過點B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如圖3,過點B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案為:105°.【點睛】本題考查平行線性質,畫輔助線,找到角的和差倍分關系是求解本題的關鍵.三、解答題11.[感知]見解析;[探究]70°;[應用](1)35;(2)或【分析】[感知]過點P作PM∥AB,根據平行線的性質得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度數,結合∠1可得結果;解析:[感知]見解析;[探究]70°;[應用](1)35;(2)或【分析】[感知]過點P作PM∥AB,根據平行線的性質得到∠1=∠AEP,∠2+∠PFD=180°,求出∠2的度數,結合∠1可得結果;[探究]過點P作PM∥AB,根據AB∥CD,PM∥CD,進而根據平行線的性質即可求∠EPF的度數;[應用](1)如圖③所示,在[探究]的條件下,根據∠PEA的平分線和∠PFC的平分線交于點G,可得∠G的度數;(2)畫出圖形,分點A在點B左側和點A在點B右側,兩種情況,分別求解.【詳解】解:[感知]如圖①,過點P作PM∥AB,∴∠1=∠AEP=40°(兩直線平行,內錯角相等)∵AB∥CD,∴PM∥CD(平行于同一條直線的兩直線平行),∴∠2+∠PFD=180°(兩直線平行,同旁內角互補),∴∠PFD=130°(已知),∴∠2=180°-130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF=90°;[探究]如圖②,過點P作PM∥AB,∴∠MPE=∠AEP=50°,∵AB∥CD,∴PM∥CD,∴∠PFC=∠MPF=120°,∴∠EPF=∠MPF-∠MPE=120°-50°=70°;[應用](1)如圖③所示,∵EG是∠PEA的平分線,FG是∠PFC的平分線,∴∠AEG=∠AEP=25°,∠GFC=∠PFC=60°,過點G作GM∥AB,∴∠MGE=∠AEG=25°(兩直線平行,內錯角相等)∵AB∥CD(已知),∴GM∥CD(平行于同一條直線的兩直線平行),∴∠GFC=∠MGF=60°(兩直線平行,內錯角相等).∴∠G=∠MGF-∠MGE=60°-25°=35°.故答案為:35.(2)當點A在點B左側時,如圖,故點E作EF∥AB,則EF∥CD,∴∠ABE=∠BEF,∠CDE=∠DEF,∵平分平分,,∴∠ABE=∠BEF=,∠CDE=∠DEF=,∴∠BED=∠BEF+∠DEF=;當點A在點B右側時,如圖,故點E作EF∥AB,則EF∥CD,∴∠DEF=∠CDE,∠ABG=∠BEF,∵平分平分,,∴∠DEF=∠CDE=,∠ABG=∠BEF=,∴∠BED=∠DEF-∠BEF=;綜上:∠BED的度數為或.【點睛】本題考查了平行線的判定與性質、平行公理及推論,角平分線的定義,解決本題的關鍵是熟練運用平行線的性質.12.(1)見解析;(2)100°;(3)不變,40°【分析】(1)如圖1,延長交于點,根據,,可得,所以,可得,又,進而可得結論;(2)如圖2,作,,根據,可得,根據平行線的性質得角之間的關系,再解析:(1)見解析;(2)100°;(3)不變,40°【分析】(1)如圖1,延長交于點,根據,,可得,所以,可得,又,進而可得結論;(2)如圖2,作,,根據,可得,根據平行線的性質得角之間的關系,再根據比大,列出等式即可求的度數;(3)如圖3,過點作,設直線和直線相交于點,根據平行線的性質和角平分線定義可求的度數.【詳解】解:(1)證明:如圖1,延長交于點,,,,,,,,;(2)如圖2,作,,,,,,平分,,,,,,,平分,,,,,設,,比大,,解得的度數為;(3)的度數不變,理由如下:如圖3,過點作,設直線和直線相交于點,平分,平分,,,,,,,,,由(2)可知:,,,,,,.【點睛】本題考查了平行線的判定與性質,解決本題的關鍵是掌握平行線的判定與性質.13.(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結論;(2)易得∠AON的度數,由兩條角平分線,可得∠DON,∠OCF的度數,也解析:(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結論;(2)易得∠AON的度數,由兩條角平分線,可得∠DON,∠OCF的度數,也易得∠COE的度數,由三角形外角的性質即可求得∠OEF的度數;(3)不變,分三種情況討論即可.【詳解】(1)∵,,且∴,∴m=20,n=70∴∠MOC=90゜-∠AOM=70゜∴∠MOC=∠OCQ=70゜∴MN∥PQ(2)∵∠AON=180゜-∠AOM=160゜又∵平分,平分∴,∵∴∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜故答案為:45.(3)不變,理由如下:如圖,當0゜<α<20゜時,∵CF平分∠OCQ∴∠OCF=∠QCF設∠OCF=∠QCF=x則∠OCQ=2x∵MN∥PQ∴∠MOC=∠OCQ=2x∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON∴∠DON=45゜+x∵∠MOE=∠DON=45゜+x∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜當α=20゜時,OD與OB共線,則∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜當20゜<α<90゜時,如圖∵CF平分∠OCQ∴∠OCF=∠QCF設∠OCF=∠QCF=x則∠OCQ=2x∵MN∥PQ∴∠NOC=180゜-∠OCQ=180゜-2x∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜綜上所述,∠EOF的度數不變.【點睛】本題主要考查了角平分線的定義,平行線的判定與性質,角的和差關系,注意分類討論,引入適當的量便于運算簡便.14.(1)10秒;(2)20秒;(3)20秒,畫圖見解析;(4)秒,畫圖見解析【分析】(1)用角的度數除以轉動速度即可得;(2)求出∠AON=60°,結合旋轉速度可得時間t;(3)設∠AON=3解析:(1)10秒;(2)20秒;(3)20秒,畫圖見解析;(4)秒,畫圖見解析【分析】(1)用角的度數除以轉動速度即可得;(2)求出∠AON=60°,結合旋轉速度可得時間t;(3)設∠AON=3t,則∠AOC=30°+6t,由題意列出方程,解方程即可;(4)根據轉動速度關系和OC平分∠MOB,由題意列出方程,解方程即可.【詳解】解:(1)∵30÷3=10,∴10秒后ON與OC重合;(2)∵MN∥AB∴∠BOM=∠M=30°,∵∠AON+∠BOM=90°,∴∠AON=60°,∴t=60÷3=20∴經過t秒后,MN∥AB,t=20秒.(3)如圖3所示:∵∠AON+∠BOM=90°,∠BOC=∠BOM,∵三角板繞點O以每秒3°的速度,射線OC也繞O點以每秒6°的速度旋轉,設∠AON=3t,則∠AOC=30°+6t,∵OC與OM重合,∵∠AOC+∠BOC=180°,可得:(30°+6t)+(90°-3t)=180°,解得:t=20秒;即經過20秒時間OC與OM重合;(4)如圖4所示:∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板繞點O以每秒3°的速度,射線OC也繞O點以每秒6°的速度旋轉,設∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,∴∠BOC=∠COM=∠BOM=(90°-3t),由題意得:180°-(30°+6t)=(90°-3t),解得:t=秒,即經過秒OC平分∠MOB.【點睛】此題考查了平行線的判定與性質,角的計算以及方程的應用,關鍵是應該認真審題并仔細觀察圖形,找到各個量之間的關系求出角的度數是解題的關鍵.15.(1);(2)①,②,理由見解析;(3)【分析】(1)過點作,則,由平行線的性質可得的度數;(2)①過點作的平行線,依據平行線的性質可得與,之間的數量關系;②過作,依據平行線的性質可得,,即解析:(1);(2)①,②,理由見解析;(3)【分析】(1)過點作,則,由平行線的性質可得的度數;(2)①過點作的平行線,依據平行線的性質可得與,之間的數量關系;②過作,依據平行線的性質可得,,即可得到;(3)過和分別作的平行線,依據平行線的性質以及角平分線的定義,即可得到與,之間的數量關系為.【詳解】解:(1)如圖1,過點作,則,由平行線的性質可得,,又∵,,∴,故答案為:;(2)①如圖2,與,之間的數量關系為;過點P作PM∥FD,則PM∥FD∥CG,∵PM∥FD,∴∠1=∠α,∵PM∥CG,∴∠2=∠β,∴∠1+∠2=∠α+∠β,即:,②如圖,與,之間的數量關系為;理由:過作,∵,∴,∴,,∴;(3)如圖,由①可知,∠N=∠3+∠4,∵EN平分∠DEP,AN平分∠PAC,∴∠3=∠α,∠4=∠β,∴,∴與,之間的數量關系為.【點睛】本題主要考查了平行線的性質,解決問題的關鍵是過拐點作平行線,利用平行線的性質得出結論.四、解答題16.(1)詳見解析;(2)∠BAE+∠MCD=90°,理由詳見解析;(3)詳見解析.【詳解】試題分析:(1)先根據CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再解析:(1)詳見解析;(2)∠BAE+∠MCD=90°,理由詳見解析;(3)詳見解析.【詳解】試題分析:(1)先根據CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出結論;(2)過E作EF∥AB,根據平行線的性質可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出結論;(3)根據AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.試題解析:證明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE.∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD;(2)∠BAE+∠MCD=90°.證明如下:過E作EF∥AB.∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE.∵∠E=90°,∴∠BAE+∠ECD=90°.∵∠MCE=∠ECD,∴∠BAE+∠MCD=90°;(3)①∠BAC=∠PQC+∠QPC.理由如下:如圖3:∵AB∥CD,∴∠BAC+∠ACD=180°.∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;②∠PQC+∠QPC+∠BAC=180°.理由如下:如圖4:∵AB∥CD,∴∠BAC=∠ACQ.∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°.點睛:本題考查了平行線的性質,根據題意作出平行線是解答此題的關鍵.17.(1)∠AEB的大小不會發生變化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直線MN與直線PQ垂直相交于O,得到∠AOB=90°,根據三角形的外角的性質得到∠解析:(1)∠AEB的大小不會發生變化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直線MN與直線PQ垂直相交于O,得到∠AOB=90°,根據三角形的外角的性質得到∠PAB+∠ABM=270°,根據角平分線的定義得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到結論;(2)由于將△ABC沿直線AB折疊,若點C落在直線PQ上,得到∠CAB=∠BAQ,由角平分線的定義得到∠PAC=∠CAB,即可得到結論;根據將△ABC沿直線AB折疊,若點C落在直線MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到結論;(3)由∠BAO與∠BOQ的角平分線相交于E可得出∠E與∠ABO的關系,由AE、AF分別是∠BAO和∠OAG的角平分線可知∠EAF=90°,在△AEF中,由一個角是另一個角的倍分情況進行分類討論即可.【詳解】解:(1)∠ACB的大小不變,∵直線MN與直線PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分別是∠BAP和∠ABM角的平分線,∴∠BAC=∠PAB,∠ABC=∠ABM,∴∠BAC+∠ABC=(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵將△ABC沿直線AB折疊,若點C落在直線PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵將△ABC沿直線AB折疊,若點C落在直線MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案為:30°,60°;(3)∵AE、AF分別是∠BAO與∠GAO的平分線,∴∠EAO=∠BAO,∠FAO=∠GAO,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分別是∠BAO和∠OAG的角平分線,∴∠EAF=∠EAO+∠FAO=(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO與∠BOQ的角平分線相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,∵有一個角是另一個角的倍,故有:①∠EAF=∠F,∠E=30°,∠ABO=60°;②∠F=∠E,∠E=36°,∠ABO=72°;③∠EAF=∠E,∠E=60°,∠ABO=120°(舍去);④∠E=∠F,∠E=54°,∠ABO=108°(舍去);∴∠ABO為60°或72°.【點睛】本題主要考查的是角平分線的性質以及三角形內角和定理的應用.解決這個問題的關鍵就是要能根據角平分線的性質將外角的度數與三角形的內角聯系起來,然后再根據內角和定理進行求解.另外需要分類討論的時候一定要注意分類討論的思想.18.(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點的“8字形”有1個,以O為交點的“8字形”有2個;(2)根據角平分線的定義得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點的“8字形”有1個,以O為交點的“8字形”有2個;(2)根據角平分線的定義得到∠CAP=∠BAP,∠BDP=∠CDP,再根據三角形內角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,兩等式相減得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入計算即可;(3)與(2)的證明方法一樣得到∠P=(2∠C+∠B).(4)根據三角形內角與外角的關系可得∠B+∠A=∠1,∠C+∠D=∠2,再根據四邊形內角和為360°可得答案.【詳解】解:(1)在圖2中有3個以線段AC為邊的“8字形”,故答案為3;(2)∵∠CAB和∠BDC的平分線AP和DP相交于點P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠BAC,∠BDP=∠BDC,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(∠B+2∠C),∵∠C=α,∠B=β,∴∠P=(β+2α);(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,∵∠1+∠2+∠F+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案為360°.19.(1)60,30;(2)∠BAD=2∠CDE,證明見解析;(3)成立,∠BAD=2∠CDE,證明見解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 增強現實廣告在移動廣告中的應用與發展-洞察闡釋
- 農業經濟管理咨詢與服務質量保障協議
- 校園網絡安全工作計劃(8篇)
- 咖啡連鎖渠道中的病毒營銷與口碑傳播研究-洞察闡釋
- 小學二年級班會活動方案(專業17篇)
- 2025年《銷售與管理》課程標準
- 急性氣管支氣管炎炎癥因子的體液免疫與細胞免疫相互作用研究-洞察闡釋
- 2025年天津市河西區中考歷史模擬試卷(三)(含答案)
- 2025 年數字音樂出版合同范本
- 2025寫字樓出租合同全解析
- 高考日語基礎歸納總結與練習(一輪復習)
- 2023年新疆初中學業水平考試生物試卷真題(含答案)
- 筆記尤里奇-《HR人力資源轉型》
- 水電站壓力鋼管安裝施工方案
- 這么寫網約車事故索賠誤工費的起訴狀更容易勝訴
- 公安機關業務技術用房建設標準正文
- 蘭州衛浴配件項目可行性研究報告
- GA 915-2010訊問椅
- 常見急救知識培訓課件
- (人教版教材)初中地理《巴西》完整版
- 律師事務所業務操作規程
評論
0/150
提交評論