




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆北京市順義一中高二數學第一學期期末綜合測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知A,B,C是橢圓M:上三點,且A(A在第一象限,B關于原點對稱,,過A作x軸的垂線交橢圓M于點D,交BC于點E,若直線AC與BC的斜率之積為,則()A.橢圓M的離心率為 B.橢圓M的離心率為C. D.2.某學校的校車在早上6:30,6:45,7:00到達某站點,小明在早上6:40至7:10之間到達站點,且到達的時刻是隨機的,則他等車時間不超過5分鐘的概率是()A. B.C. D.3.已知圓與圓相交于A、B兩點,則圓上的動點P到直線AB距離的最大值為()A. B.C. D.4.已知是定義在上的函數,其導函數為,且,且,則不等式的解集為()A. B.C. D.5.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.為比較甲、乙兩地某月時的氣溫狀況,隨機選取該月中的天,將這天中時的氣溫數據(單位:℃)制成如圖所示的莖葉圖(十位數字為莖,個位數字為葉).考慮以下結論:①甲地該月時的平均氣溫低于乙地該月時的平均氣溫;②甲地該月時的平均氣溫高于乙地該月時的平均氣溫;③甲地該月時的氣溫的標準差小于乙地該月時的氣溫的標準差;④甲地該月時的氣溫的標準差大于乙地該月時的氣溫的標準差.其中根據莖葉圖能得到的統計結論的編號為()A.①③ B.①④C.②③ D.②④7.下列命題中的假命題是()A.,B.存在四邊相等的四邊形不是正方形C.“存在實數,使”的否定是“不存在實數,使”D.若且,則,至少有一個大于8.命題“,使”的否定是()A.,有 B.,有C.,使 D.,使9.在空間直角坐標系中,已知,,則MN的中點P到坐標原點О的距離為()A. B.C.2 D.310.已知雙曲線,過點作直線l與雙曲線交于A,B兩點,則能使點P為線段AB中點的直線l的條數為()A.0 B.1C.2 D.311.已知橢圓的一個焦點坐標是,則()A.5 B.2C.1 D.12.已知為偶函數,且當時,,其中為的導數,則不等式的解集為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在某項測量中,測量結果ξ服從正態分布(),若ξ在內取值的概率為0.4,則ξ在內取值的概率為______14.已知雙曲線的左、右焦點分別為,,點是圓上一個動點,且線段的中點在的一條漸近線上,若,則的離心率的取值范圍是________15.有公共焦點,的橢圓和雙曲線的離心率分別為,,點為兩曲線的一個公共點,且滿足,則的值為______16.已知,求_____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知極坐標系的極點在直角坐標系的原點處,極軸與軸的正半軸重合,直線的極坐標方程為,曲線的參數方程是(是參數)(1)求直線的直角坐標方程及曲線的普通方程;(2)求曲線上的點到直線的距離的最大值18.(12分)已知橢圓的左、右焦點分別為,,離心率為,過的直線與橢圓交于,兩點,若的周長為8.(1)求橢圓的標準方程;(2)設為橢圓上的動點,過原點作直線與橢圓分別交于點、(點不在直線上),求面積的最大值.19.(12分)在等差數列中,,前10項和(1)求列通項公式;(2)若數列是首項為1,公比為2的等比數列,求的前8項和20.(12分)已知點A(1,2)在拋物線C∶上,過點A作兩條直線分別交拋物線于點D,E,直線AD,AE的斜率分別為kAD,kAE,若直線DE過點P(-1,-2)(1)求拋物線C的方程;(2)求直線AD,AE的斜率之積.21.(12分)如圖,四棱錐中,底面ABCD是邊長為2的菱形,,,且,E為PD的中點(1)求證:;(2)求二面角的大小;(3)在側棱PC上是否存在點F,使得點F到平面AEC的距離為?若存在,求出的值;若不存在,請說明理由22.(10分)中國男子籃球職業聯賽(ChineseBasketballAssociation),簡稱中職籃(CBA),由中國國家體育總局籃球運動管理中心舉辦的男子職業籃球賽事,旨在全面提高中國籃球運動水平,其中誕生了姚明、王治郅、易建聯、朱芳雨等球星.該比賽分為常規賽和季后賽.由于新冠疫情關系,某年聯賽采用賽會制:所有球隊集中在同一個地方比賽,分兩個階段進行,每個階段采用循環賽,分主場比賽和客場比賽,積分排名前8球隊進入季后賽.下表是A隊在常規賽60場比賽中的比賽結果記錄表.階段比賽場數主場場數獲勝場數主場獲勝場數第一階段30152010第二階段30152515(1)根據表中數據,完成下面列聯表:A隊勝A隊負合計主場5客場20合計60(2)根據(1)中列聯表,判斷是否有90%的把握認為比賽的“主客場”與“勝負”之間有關?附:.0.1000.0500.025k2.7063.8415.024
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設出點,,的坐標,將點,分別代入橢圓方程兩式作差,構造直線和的斜率之積,得到,即可求橢圓的離心率,利用,求出,可知點在軸上,且為的中點,則.【詳解】設,,,則,,,兩式相減并化簡得,即,則,則AB錯誤;∵,,∴,又∵,∴,即,解得,則點在軸上,且為的中點即,則正確.故選:C.2、B【解析】求出小明等車時間不超過5分鐘能乘上車的時長,即可計算出概率.【詳解】6:40至7:10共30分鐘,小明同學等車時間不超過5分鐘能乘上車只能是6:40至6:45和6:55至7:00到站,共10分鐘,所以所求概率為.故選:B3、A【解析】判斷圓與的位置并求出直線AB方程,再求圓心C到直線AB距離即可計算作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,,,即圓與相交,直線AB方程為:,圓的圓心,半徑,點C到直線AB距離的距離,所以圓C上的動點P到直線AB距離的最大值為.故選:A4、B【解析】令,再結合,和已知條件將問題轉化為,最后結合單調性求解即可.【詳解】解:令,則,因為,所以,即函數為上的增函數,因為,不等式可化為,所以,故不等式的解集為故選:B5、B【解析】根據充分條件和必要條件的概念即可判斷.【詳解】∵,∴“”是“”的必要不充分條件.故選:B.6、B【解析】根據莖葉圖數據求出平均數及標準差即可【詳解】由莖葉圖知甲地該月時的平均氣溫為,標準差為由莖葉圖知乙地該月時的平均氣溫為,標準差為則甲地該月14時的平均氣溫低于乙地該月14時的平均氣溫,故①正確,乙平均氣溫的標準差小于甲的標準差,故④正確,故正確的是①④,故選:B7、C【解析】利用簡易邏輯的知識逐一判斷即可.【詳解】,故A正確;菱形的四邊相等,但不一定是正方形,故B正確;“存在實數,使”的否定是“對任意的實數都有”,故C錯誤;假設且,則,與矛盾,故D正確;故選:C8、B【解析】根據特稱命題的否定是全稱命題即可得正確答案【詳解】存在量詞命題的否定,只需把存在量詞改成全稱量詞,并把后面的結論否定,所以“,使”的否定為“,有”,故選:B.9、A【解析】利用中點坐標公式及空間中兩點之間的距離公式可得解.【詳解】,,由中點坐標公式,得,所以.故選:A10、A【解析】先假設存在這樣的直線,分斜率存在和斜率不存在設出直線的方程,當斜率k存在時,與雙曲線方程聯立,消去,得到關于的一元二次方程,直線與雙曲線相交于兩個不同點,則,,又根據是線段的中點,則,由此求出與矛盾,故不存在這樣的直線滿足題意;當斜率不存在時,過點的直線不滿足條件,故符合條件的直線不存在.詳解】設過點的直線方程為或,①當斜率存在時有,得(*)當直線與雙曲線相交于兩個不同點,則必有:,即又方程(*)的兩個不同的根是兩交點、的橫坐標,又為線段的中點,,即,,使但使,因此當時,方程①無實數解故過點與雙曲線交于兩點、且為線段中點的直線不存在②當時,經過點的直線不滿足條件.綜上,符合條件的直線不存在故選:A11、C【解析】根據題意橢圓焦點在軸上,且,將橢圓方程化為標準形式,從而得出,得出答案.【詳解】由焦點坐標是,則橢圓焦點在軸上,且將橢圓化為,則由,焦點坐標是,則,解得故選:C12、A【解析】根據已知不等式和要求解的不等式特征,構造函數,將問題轉化為解不等式.通過已知條件研究g(x)的奇偶性和單調性即可解該不等式.【詳解】令,則根據題意可知,,∴g(x)是奇函數,∵,∴當時,,單調遞減,∵g(x)是奇函數,g(0)=0,∴g(x)在R上單調遞減,由不等式得,.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、4##【解析】根據正態分布曲線的對稱性求解【詳解】因為ξ服從正態分布(),即正態分布曲線的對稱軸為,根據正態分布曲線的對稱性,可知ξ在與取值的概率相同,所以ξ在內取值的概率為0.4.故答案為:0.414、【解析】設,,因為點是線段中點,所以有,代入坐標求出點的軌跡為圓,因為點在漸近線上,所以圓與漸近線有公共點,利用點到直線的距離求出臨界狀態下漸近線的斜率,數形結合求出有公共點時漸近線斜率的范圍,從而求出離心率的范圍.【詳解】解:設,,因為點是線段的中點,所以有,即有,因為點在圓上,所以滿足:,代入可得:,即,所以點的軌跡是以為圓心,以1為半徑的圓,如圖所示:因為點在漸近線上,所以圓與漸近線有公共點,當兩條漸近線與圓恰好相切時為臨界點,則:圓心到漸近線的距離為,因為,所以,即,且,所以,此時,,當時,漸近線與圓有公共點,.故答案為:.15、4【解析】可設為第一象限的點,,,求出,,化簡即得解.【詳解】解:可設為第一象限的點,,,由橢圓定義可得,由雙曲線的定義可得,可得,,由,可得,即為,化為,則故答案為:416、【解析】根據導數的定義即可求解.【詳解】,所以,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)直線的直角坐標方程是,曲線的普通方程是(2)【解析】(1)利用極坐標與直角坐標互化的公式進行求解,消去參數求出普通方程;(2)設曲線上任一點以,利用點到直線距離公式和輔助角公式進行求解.【小問1詳解】因為,所以,即,將,代入,得直線的直角坐標方程是由得曲線的普通方程是【小問2詳解】設曲線上任一點以,則點到直線的距離當時,,故曲線上的點到直線的距離的最大值為18、(1);(2).【解析】(1)根據周長可求,再根據離心率可求,求出后可求橢圓的方程.(2)當直線軸時,計算可得的面積的最大值為,直線不垂直軸時,可設,聯立直線方程和橢圓方程可求,設與平行且與橢圓相切的直線為:,結合橢圓方程可求的關系,從而求出該直線到直線的距離,從而可求的面積的最大值為.【詳解】(1)由橢圓的定義可知,的周長為,∴,,又離心率為,∴,,所以橢圓方程為.(2)當直線軸時,;當直線不垂直軸時,設,,,∴.設與平行且與橢圓相切的直線為:,,∵,∴,∴距的最大距離為,∴,綜上,面積的最大值為.【點睛】方法點睛:求橢圓的標準方程,關鍵是基本量的確定,而面積的最值的計算,則可以轉化為與已知直線平行且與橢圓相切的直線與已知直線的距離來計算,此類轉化為面積最值計算過程的常規轉化.19、(1);(2)347.【解析】(1)設等差數列的公差為,解方程組即得解;(2)先求出,再分組求和得解.【詳解】解:(1)設等差數列的公差為,則解得所以(2)由題意,,所以所以的前8項和為20、(1)(2)【解析】(1)代入點即可求得拋物線方程;(2)聯立方程后利用韋達定理求出,,,,然后代入即可求得斜率的積.【小問1詳解】解:點A(1,2)在拋物線C∶上故【小問2詳解】設直線方程為:聯立方程,整理得:由題意及韋達定理可得:,21、(1)證明見解析(2)(3)存在;【解析】(1)作出輔助線,證明線面垂直,進而證明線線垂直;(2)建立空間直角坐標系,用空間向量求解二面角;(3)設出F點坐標,用空間向量的點到平面距離公式進行求解.【小問1詳解】證明:連接BD,設BD與AC交于點O,連接PO.因為,所以四棱錐中,底面ABCD是邊長為2的菱形,則又,所以平面PBD,因為平面PBD,所以【小問2詳解】因為,所以,所以由(1)知平面ABCD,以O為原點,,,的方向為x軸,y軸,z軸正方向
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游行業運營與服務管理案例分析題庫及解答指導
- 證券投資分析與風險管理知識考點
- 擴大宣傳效益內容梳理條款協議
- ××超市版權合規制度
- 我心中的英雄形象:小學生寫人作文9篇
- 美國國立衛生研究院(NIH)公共獲取的案例解析及啟示
- 雨后彩虹的約定:童話色彩的故事展現美好愿景8篇
- 2025年甲肝滅活疫苗項目立項申請報告模板
- 2025年德語TestDaF口語模擬試卷:歷年真題解析與備考策略
- 2025年電子商務師(初級)職業技能鑒定試卷:電商行業發展趨勢分析
- 注塑加工廠管理
- 邊坡作業安全教育培訓
- 《2025年CSCO腎癌診療指南》解讀
- 小學語文跨學科主題學習策略研究
- 2022-2023學年浙江省溫州市永嘉縣人教PEP版四年級下冊期末測試英語試卷
- 東盟經貿文化與習俗知到智慧樹章節測試課后答案2024年秋海南外國語職業學院
- 國家開放大學專科《社會調查研究與方法》期末紙質考試總題庫2025春期考試版
- 2024年設備監理師考試題庫及答案(歷年真題)
- 財務指標分析培訓課件
- 病案分析報告范文
- vte預防健康教育課件
評論
0/150
提交評論