




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第五章平行線及相交線※1.互為余角和互為補角的有關概念及性質如果兩個角的和為90°(或直角),則這兩個角互為余角;如果兩個角的和為180°(或平角),則這兩個角互為補角;注意:這兩個概念都是對于兩個角而言的,而且兩個概念強調的是兩個角的數量關系,及兩個角的相互位置沒有關系。它們的主要性質:同角或等角的余角相等;同角或等角的補角相等。對頂角是成對存在的,它們互為對頂角,如∠1是∠3的對頂角,同時,∠3是∠1的對頂角,也常說∠1和∠3是對頂角.角的名稱特征性質相同點不同點對頂角①兩條直線相交面成的角②有一個公共頂點③沒有公共邊對頂角相等都是兩直線相交而成的角,都有一個公共頂點,它們都是成對出現。對頂角沒有公共邊而鄰補角有一條公共邊;兩條直線相交時,一個有的對頂角有一個,而一個角的鄰補角有兩個。鄰補角①兩條直線相交面成的角②有一個公共頂點③有一條公共邊鄰補角互補“互相垂直”及“垂線”的區別及聯系:“互相垂直”指兩條直線的位置關系;“垂線”是指其中一條直線對另一條直線的命名。如果說兩條直線“互相垂直”時,其中一條必定是另一條的“垂線”,如果一條直線是另一條直線的“垂線”,則它們必定“互相垂直”。(2)判斷以下兩條直線是否垂直:①兩條直線相交所成的四個角中有一個是直角;②兩條直線相交所成的四個角相等;③兩條直線相交,有一組鄰補角相等;④兩條直線相交,對頂角互補.垂線性質1:過一點有且只有一條直線及已知直線垂直.兩點間線段最短.連接直線外一點及直線上各點的所有線段中,垂線段最短.直線外一點到這條直線的垂線段的長度,叫做點到直線的距離.二、同位角、內錯角、同旁內角如圖,直線a、b及直線c相交,或者說,兩條直線a、b被第三條直線c所截,得到八個角。我們來研究那些沒有公共頂點的兩個角的關系。565687∠1及∠2、∠4及∠8、∠5及∠6、∠3及∠7有什么位置關系?在截線的同旁,被截直線的同方向(同上或同下).具有這種位置關系的兩個角叫做同位角。同位角形如字母“F”。∠3及∠2、∠4及∠6的位置有什么共同的特點?在截線的兩旁,被截直線之間。具有這種位置關系的兩個角叫做內錯角.內錯角形如字母“Z”?!?及∠6、∠4及∠2的位置有什么共同的特點?在截線的同旁,被截直線之間。具有這種位置關系的兩個角叫做同旁內角.二、平行線定義表示法1平行定義:同一平面內,存在一條直線a及直線b不相交的位置,這時直線a及b互相平行.換言之,同一平面內,不相交的兩條直線叫做平行線.直線a及b是平行線,記作“∥”,這里“∥”是平行符號.平行線定義的本質屬性,第一是同一平面內兩條直線,第二是設有交點的兩條直線.2.同一平面內,兩條直線的位置關系從同一平面內,兩條直線的交點情況去確定兩條直線的位置關系.在同一平面內,兩條直線只有兩種位置關系:相交或平行,兩者必居其一.即兩條直線不相交就是平行,或者不平行就是相交.判斷兩直線平行的方法?(1)平行線的定義:在同一平面內不相交的兩條直線平行。(2)平行公理的推論:如果兩條直線都平行于第三條直線,則這兩條直線也互相平行。(3)兩直線平行的條件:兩條直線被第三條直線所截,如果同位角相等,則這兩條直線平行.兩條直線被第三條直線所截,如果內錯角相等,則這兩條直線平行.兩條直線被第三條直線所截,如果同旁內角互補,則這兩條直線平行.平行線具有性質:性質1:兩條平行線被第三條直線所截,同位角相等,簡稱為兩直線平行,同位角相等.性質2:兩條平行線被第三條直線所截,內錯角相等,簡稱為兩直線平行,內錯相等.性質3:兩條直線按被第三條線所截,同旁內角互補,簡稱為兩直線平行,同旁內角互補.命題、定理、證明判斷一件事情的語句,叫做命題.(3)命題的組成.①命題由題設和結論兩部分組成.題設是已知事項,結論是由已知事項推出的事項.②命題的形成,可以寫成“如果……,則……”的形式。真命題及假命題:命題的正確性是我們經過推理證實的,這樣得到的真命題叫做定理,作為真命題,定理也可以作為繼續推理的依據.平移:(1)把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形及原圖形的形狀和大小完全相同.(2)新圖形中的每一點,都是由原圖形中的某一個點移動后得到的,這兩個點是對應點.(3)連接各組對應的線段平行且相等.圖形的這種變換,叫做平移變換,簡稱平移小結:在平移過程中,對應點所連的線段也可能在一條直線上,當圖形平移的方向是沿著一邊所在直線的方向時,則此邊上的對應點必在這條直線上。2利用平移的特征,作平行線,構造等量關系第六章實數平方根如果正方形的面積分別是1、9、16、36、,則正方形的邊長分別是多少?學生會求出邊長分別是1、3、4、6、上面的問題,實際上是已知一個正數的平方,求這個正數的問題。2.歸納:⑴算術平方根的概念:一般地,如果一個正數x的平方等于a,即x2=a則這個正數x叫做a的算術平方根。⑵算術平方根的表示方法:a的算術平方根記為,讀作“根號a”或“二次很號a”,a叫做被開方數。歸納:一個正數的算術平方根有1個;0的算術平方根是0;負數沒有算術平方根。即:只有非負數有算術平方根,如果有意義,則。注:且平方根第2課時怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?如圖,把兩個小正方形沿對角線剪開,將所得的4個直角三角形拼在一起,就得到一個面積為2的大正方形。你知道這個大正方形的邊長是多少嗎?設大正方形的邊長為,則,由算術平方根的意義可知,我們發現它的小數位數無限,且小數部分不循環,像這樣的數我們成為無限不循環小數。=……6平方根歸納:1、平方根的概念:如果一個數的平方等于a,則這個數就叫做a的平方根.即:如果=a,則x叫做a的平方根.求一個數的平方根的運算,叫做開平方.例如:3的平方等于9,9的平方根是3,所以平方及開平方互為逆運算.6.2立方根1.探索:設這種包裝箱的邊長為,則,這就是要求一個數,使它的立方等于27.因為,所以,即這種包裝箱的邊長應為。2.歸納:立方根的概念:一般地,如果一個數的立方等于,則這個數叫做的立方根或三次方根。立方根的表示方法:如果,則叫做的立方根。記作,讀作三次根號。其中是被開方數,3是根指數,中的根指數3不能省略。開立方的概念:求一個數的立方根的運算,叫做開立方。開立方及立方互為逆運算,可以根據這種關系求一個數的立方根。6實數歸納:任何一個有理數(整數或分數)都可以寫成有限小數或者無限寫成小數的形式發現上面的有理數都可以寫成有限小數或無限循環小數的形式即:循環小數的形式,反過來,任何有限小數或者無限循環小數也都是有理數。通過前面的學習,我們知道有很多數的平方根或立方根都是無限不循環小數,把無限不循環小數叫做無理數。比如等都是無理數?!彩菬o理數。二、實數及其分類:1、實數的概念:有理數和無理數統稱為實數。2、實數的分類:按照定義分類如下:實數按照正負分類如下:實數3、實數及數軸上點的關系:歸納:①實數及數軸上的點是一一對應的。即沒一個實數都可以用數軸上的點來表示;反過來,數軸上的每一個點都表示一個實數。②對于數軸上的任意兩個點,右邊的點所表示的實數總比左邊的點表示的實數大。畫弧,及數軸正半軸的交點就表示。解:如圖所示,由勾股定理可知:,以原點為圓心,以長度為半徑畫弧,及數軸的正半軸交于點,則點就表示。6實數第二課時通過復習有理數的相反數、絕對值、運算律、運算性質,引出實數的相反數、絕對值、運算律、運算性質,并通過例題和練習題加以鞏固,適當加深對它們的認識。會求實數的相反數和絕對值;會進行實數的加減法運算;會進行實數的近似計算。有理數的一些概念和運算性質運算律:1、相反數:有理數的相反數是。2、絕對值:當≥0時,,當≤0時,。3、運算律和運算性質:有理數之間可以進行加、減、乘、除(除數不為0)、乘方、非負數的開平方、任意數的開立方運算,有理數的運算中還有交換律、結合律、分配律。二、實數的運算:1.實數的相反數:數的相反數是。2.一個正實數的絕對值是它本身,一個負實數的絕對值是它的相反數,0的絕對值是0.3、實數之間可以進行加、減、乘、除(除數不為0)、乘方、非負實數的開方運算,還有任意實數的開立方運算,在進行實數的運算中,交換律、結合律、分配律等運算性質也適用。第六章復習本章的知識網絡結構:知識梳理一.數的開方主要知識點:【1】平方根:1.如果一個數x的平方等于a,則,這個數x就叫做a的平方根;也即,當時,我們稱x是a的平方根,記做:。因此:2.當a=0時,它的平方根只有一個,也就是0本身;3.當a>0時,也就是a為正數時,它有兩個平方根,且它們是互為相反數,通常記做:。當a<0時,也即a為負數時,它不存在平方根。【算術平方根】:1.如果一個正數x的平方等于a,即,則,這個正數x就叫做a的算術平方根,記為:“”,讀作,“根號a”,其中,a稱為被開方數。特別規定:0的算術平方根仍然為0。2.算術平方根的性質:具有雙重非負性,即:。3.算術平方根及平方根的關系:算術平方根是平方根中正的一個值,它及它的相反數共同構成了平方根。因此,算術平方根只有一個值,并且是非負數,它只表示為:;而平方根具有兩個互為相反數的值,表示為:。【立方根】1.如果x的立方等于a,則,就稱x是a的立方根,或者三次方根。記做:,讀作,3次根號a。注意:這里的3表示的是開根的次數。一般的,平方根可以省寫根的次數,但是,當根的次數在兩次以上的時候,則不能省略。2.平方根及立方根:每個數都有立方根,并且一個數只有一個立方根;但是,并不是每個數都有平方根,只有非負數才能有平方根。【無理數】1.無限不循環小數的小數叫做無理數;它必須滿足“無限”以及“不循環”這兩個條件。在初中階段,無理數的表現形式主要包含下列幾種:(1)特殊意義的數,如:圓周率以及含有的一些數,如:2-,3等;(2)開方開不盡的數,如:等;(3)特殊結構的數:如:2.01001000100001…(兩個1之間依次多1個0)等。應當要注意的是:帶根號的數不一定是無理數,如:等;無理數也不一定帶根號,如:2.有理數及無理數的區別:(1)有理數指的是有限小數和無限循環小數,而無理數則是無限不循環小數;(2)所有的有理數都能寫成分數的形式(整數可以看成是分母為1的分數),而無理數則不能寫成分數形式?!緦崝怠?.有理數及無理數統稱為實數。在實數中,沒有最大的實數,也沒有最小的實數;絕對值最小的實數是0,最大的負整數是-1。2.實數的性質:實數a的相反數是-a;實數a的倒數是(a≠0);實數a的絕對值|a|=,它的幾何意義是:在數軸上的點到原點的距離。3.實數的大小比較法則:實數的大小比較的法則跟有理數的大小比較法則相同:即正數大于0,0大于負數;正數大于負數;兩個正數,絕對值大的就大,兩個負數,絕對值大的反而小。(在數軸上,右邊的數總是大于左邊的數)。對于一些帶根號的無理數,我們可以通過比較它們的平方或者立方的大小。4.實數的運算:在實數范圍內,可以進行加、減、乘、除、乘方、開方六種運算。運算法則的值。第七章平面直角坐標系7.1.1有序數對3.某人買了一張8排6號的電影票,有序數對:用含有兩個數的詞表示一個確定的位置,其中各個數表示不同的含義,我們把這種有順序的兩個數a及b組成的數對,叫做有序數對(orderedpair),記作(a,b)。利用有序數對,可以很準確地表示出一個位置。常見的確定平面上的點位置常用的方法(1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。(2)以某一點為觀察點,用方位角、目標到這個點的距離這兩個數來確定目標所在的位置。1.如圖,A點為原點(0,0),則B點記為(3,1)2.如圖,以燈塔A為觀測點,小島B在燈塔A北偏東45,距燈塔3km處。例2如圖是某次海戰中敵我雙方艦艇對峙示意圖,對我方艦艇來說:1)北偏東方向上有哪些目標?要想確定敵艦B的位置,還需要什么數據?(2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?(3)要確定每艘敵艦的位置,各需要幾個數據?7.1.2平面直角坐標系正確畫坐標和找對應點.一.利用已有知識,引入1.如圖,怎樣說明數軸上點A和點B的位置,2.根據下圖,你能正確說出各個象棋子的位置嗎?平面直角坐標系:平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系.水平的數軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數軸為y軸或縱軸,正方向;兩個坐標軸的交點為平面直角坐標系的原點。點的坐標:我們用一對有序數對表示平面上的點,這對數叫坐標。表示方法為(a,b).a是點對應橫軸上的數值,b是點在縱軸上對應的數值。7.2.1用坐標表示地理位置教學目標:1.了解用平面直角坐標系來表示地理位置的意義及主要過程;培養學生解決實際問題的能力.2.通過學習如何用坐標表示地理位置,發展學生的空間觀念.3.通過學習,學生能夠用坐標系來描述地理位置.4.通過用坐標系表示實際生活中的一些地理位置,培養學生的認真、嚴謹的做事態度.重點:利用坐標表示地理位置.難點:建立適當的直角坐標系,利用平面直角坐標系解決實際問題.教學過程一、創設問題情境觀察:教材第63頁圖7.2-1.今天我們學習如何用坐標系表示地理位置,首先我們來探究以下問題.二、師生互動,探究用坐標表示地理位置的方法(1)建立坐標系,選擇一個適當的參照點為原點,確定x軸、y軸的正方向;(2)根據具體問題確定適當的比例尺,在坐標軸上標出單位長度;(3)在坐標平面內畫出這些點,寫出各點的坐標和各個地點的名稱.應注意的問題:用坐標表示地理位置時,一是要注意選擇適當的位置為坐標原點,這里所說的適當,通常要么是比較有名的地點,要么是所要繪制的區域內較居中的位置;二是坐標軸的方向通常是以正北為縱軸的正方向,這樣可以使東西南北的方向及地理位置的方向一致;三是要注意標明比例尺和坐標軸上的單位長度.有時,由于地點比較集中,坐標平面又較小,各地點的名稱在圖上可以用代號標出,在圖外另附名稱.7.2.2用坐標表示平移(1)如圖將點A(-2,-3)向右平移5個單位長度,得到點A1,在圖上標出它的坐標,把點A向上平移4個單位長度呢?(2)把點A向左或向下平移4個單位長度,觀察他們的變化,你能從中發現什么規律嗎?規律:在平面直角坐標系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應點(x+a,y)(或(,));將點(x,y)向上(或下)平移b個單位長度,可以得到對應點(x,y+b)(或(,)).教師說明:對一個圖形進行平移,這個圖形上所有點的坐標都要發生相應的變化;反過來,從圖形上的點的坐標的某種變化,我們也可以看出對這個圖形進行了怎樣的平移.例如圖(1),三角形ABC三個頂點坐標分別是A(4,3),B(3,1),C(1,2).(1)將三角形ABC三個頂點的橫坐標后減去6,縱坐標不變,分別得到點A1、B1、C1,依次連接A1、B1、C1各點,所得三角形A1B1C1及三角形ABC的大小、形狀和位置上有什么關系?(2)將三角形ABC三個頂點的縱坐標都減去5,橫坐標不變,分別得到點A2、B2、C2,依次連接A2、B2、C2各點,所得三角形A2B2C2及三角形ABC的大小、形狀和位置上有什么關系?引導學生動手操作,按要求畫出圖形后,解答此例題.解:如圖(2),所得三角形A1B1C1及三角形ABC的大小、形狀完全相同,三角形A1B1C1可以看作將三角形ABC向左平移6個單位長度得到.類似地,三角形A2B2C2及三角形ABC的大小、形狀完全相同,它可以看作將三角形ABC向下平移5個單位長度得到.第七章平面直角坐標系小結一、本章知識結構圖:二、平面直角坐標系1、平面內有公共原點且互相垂直的兩條數軸,構成平面直角坐標系.平面直角坐標系,水平的數軸叫做x軸或橫軸(正方向向右),鉛直的數軸叫做y軸或縱軸(正方向向上),兩軸交點O是原點.這個平面叫做坐標平面.x軸和y把坐標平面分成四個象限(每個象限都不包括坐標軸上的點),要注意象限的編號順序及各象限內點的坐標的符號:由坐標平面內一點向x軸作垂線,垂足在x軸上的坐標叫做這個點的橫坐標,由這個點向y軸作垂線,垂足在y軸上的坐標叫做這個點的縱坐標,這個點的橫坐標、縱坐標合在一起叫做這個點的坐標(橫坐標在前,縱坐標在后).一個點的坐標是一對有序實數,對于坐標平面內任意一點,都有唯一一對有序實數和它對應,對于任意一對有序實數,在坐標平面都有一點和它對應,也就是說,坐標平面內的點及有序實數對是一一對應的.2、不同位置點的坐標的特征:(1)、各象限內點的坐標有如下特征:點P(x,y)在第一象限x>0,y>0;點P(x,y)在第二象限x<0,y>0;點P(x,y)在第三象限x<0,y<0;點P(x,y)在第四象限x>0,y<0.(2)、坐標軸上的點有如下特征:點P(x,y)在x軸上y為0,x為任意實數.點P(x,y)在y軸上x為0,y為任意實數.3、點P(x,y)坐標的幾何意義:(1)點P(x,y)到x軸的距離是|y|;(2)點P(x,y)到y袖的距離是|x|;(3)點P(x,y)到原點的距離是4、關于坐標軸、原點對稱的點的坐標的特征:(1)點P(a,b)關于x軸的對稱點是;(2)點P(a,b)關于x軸的對稱點是;(3)點P(a,b)關于原點的對稱點是;三、坐標方法的簡單應用(一)、表示地理位置:(注意點)1、建立坐標系,選擇一個適當的參照點為原點,確定x軸、y軸的正方向.(說清楚以什么為原點,什么所在的方向為x軸的正方向,什么所在的方向為y軸的正方向).2、根據具體問題確定適當的比例尺,在坐標軸上標出單位長度.(比例尺不能漏,單位長度不要忘記).3、在坐標平面內畫出這些點,寫出各點的坐標和各個點的名稱.(二)、用坐標表示平移1、圖形的平移:在平面內,將一個圖形沿某個方向移動一定距離,這種圖形的運動稱為平移.2、圖形的移動引起坐標變化的規律:(1)、將點(x,y)向右平移a個單位長度,得到的對應點的坐標是:(x+a,y)(2)、將點(x,y)向左平移a個單位長度,得到的對應點的坐標是:(x-a,y)(3)、將點(x,y)向上平移b個單位長度,得到的對應點的坐標是:(x,y+b)(4)、將點(x,y)向下平移b個單位長度,得到的對應點的坐標是:(x,y-b)3、點的變化引起圖形移動的規律:(1)、將點(x,y)的橫坐標加上一個正數a,縱坐標不變,即(x+a,y),則其新圖形就是把原圖形向右平移a個單位.(2)、將點(x,y)的橫坐標減去一個正數a,縱坐標不變,即(x-a,y),則其新圖形就是把原圖形向左平移a個單位.(1)、將點(x,y)的縱坐標加上一個正數b,橫坐標不變,即(x,y+b),則其新圖形就是把原圖形向上平移a個單位.(1)、將點(x,y)的縱坐標加上一個正數b,橫坐標不變,即(x,y+b),則其新圖形就是把原圖形向下平移b個單位.4、平移的性質:(1)、平移后,對應點所連的線段平行且相等;(2)、平移后,對應線段平行且相等;(3)、平移后,對應角相等;(4)、平移后,只改變圖形的位置,不改變圖形的形狀及大小.5、決定平移的因素:平移的方向和距離.6、畫平移圖形,必須找出平移的方向和距離、畫平移圖形的依據是平移的性質.7、在實際生活中,同一個圖案往往可以由不同的基本圖案經過平移形成的,選取了不同的基本圖案之后,分析這個圖案的形成過程就有所不同.第八章二元一次方程組一般地,使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解.二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解.從上面兩個方程組的解法可以發現,把兩個二元一次方程的兩邊分別進行相加減,就可以消去一個未知數,得到一個一元一次方程。兩個二元一次方程中同一未知數的系數相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數,得到一個一元一次方程,這種方法叫做加減消元法,簡稱加減法。(1)用加減消元法解二元一次方程組的基本思路仍然是“消元”.(2)用加減法解二元一次方程組的一般步驟:第一步:在所解的方程組中的兩個方程,如果某個未知數的系數互為相反數,可以把這兩個方程的兩邊分別相加,消去這個未知數;如果未知數的系數相等,可以直接把兩個方程的兩邊相減,消去這個未知數.第二步:如果方程組中不存在某個未知數的系數絕對值相等,則應選出一組系數(選最小公倍數較小的一組系數),求出它們的最小公倍數(如果一個系數是另一個系數的整數倍,該系數即為最小公倍數),然后將原方程組變形,使新方程組的這組系數的絕對值相等(都等于原系數的最小公倍數),再加減消元.第三步:對于較復雜的二元一次方程組,應先化簡(去分母,去括號,合并同類項等),通常要把每個方程整理成含未知數的項在方程的左邊,常數項在方程的右邊的形式,再作如上加減消元的考慮.(三)歸納總結,知識回顧本節課,我們主要是學習了二元一次方程組的另一解法──加減法.通過把方程組中的兩個方程進行相加或相減,消去一個未知數,化“二元”為“一元”.8.4三元一次方程組解法舉例這個方程組有三個相同的未知數,每個方程中含未知數的項的次數都是1,并且一共有三個方程,像這樣的方程組叫做三元一次方程組.二、探究三元一次方程組的解法【解法探究】怎樣解這個方程組呢?能不能類比二元一次方程組的解法,設法消去一個或兩個未知數,把它化成二元一次方程組或一元一次方程呢?(展開思路,暢所欲言)例1.解方程組分析1:發現三個方程中x的系數都是1,因此確定用減法“消x”.分析2:方程③是關于x的表達式,確定“消x”的目標.【方法歸納】根據方程組的特點,由學生歸納出此類方程組為:類型一:有表達式,用代入法.針對上面的例題進而分析,例1中方程③中缺z,因此利用①、②消z,可達到消元構成二元一次方程組的目的.根據方程組的特點,由學生歸納出此類方程組類型二:缺某元,消某元.教師提示:當然我們還可以通過消掉未知項y來達到將“三元”轉化為“二元”目的,同學可以課下自行嘗試一下.三、課堂小結1.解三元一次方程組的基本思路:通過“代入”或“加減”進行消元,把“三元”化為“二元”,使解三元一次方程組轉化為解二元一次方程組,進而轉化為解一元一次方程.即三元一次方程組二元一次方程組一元一次方程2.解題要有策略,今天我們學到的策略是:有表達式,用代入法;缺某元,消某元.本章小結一、知識結構實際問題實際問題設未知數,列方程二元或三元一次方程組解方程組代入法、加減法二元或三元一次方程組的解實際問題的答案檢驗第九章不等式及不等式組(一)不等式、一元一次不等式的概念在學生充分發表自己意見的基礎上,師生共同歸納得出:用“<”或“>”表示大小關系的式子叫做不等式;用“并”表示不等關系的式子也是不等式。(二)不等式的解、不等式的解集2、直接想出不等式的解集,并在數軸上表示出來:(1)x+3>6(2)2x<8(3)x-2>02、不等式的解及不等式的解集;3、不等式的解集在數軸上的表示.不等式的性質(一)共同歸納得出:不等式性質1:不等式兩邊都加上(或減去)同一個數(或式子),不等號的方向不變.不等式性質2:不等式兩邊都乘(或除以)同一個正數,不等號的方向不變.不等式性質3:不等式兩邊都乘(或除以)同一個負數,不等號的方向改變.9.3一元一次不等式組(一)歸納解一元一次不等式組的步驟:(1)求出各個不等式的解集;(2)找出各個不等式的解集的公共部分(利用數軸).布置作業:教科書130頁習題9.3第4、5、6題.不等式及不等式組知識總結一、不等式的概念1.不等式:用不等號表示不等關系的式子,叫做不等式。2.不等式的解集:對于一個含有未知數的不等式,任何一個適合這個不等式的未知數的值,都叫做這個不等式的解。3.不等式的解集:對于一個含有未知數的不等式,它的所有解的集合叫做這個不等式的解的集合,簡稱這個不等式的解集。4.解不等式:求不等式的解集的過程,叫做解不等式。5.用數軸表示不等式的解集。二、不等式的基本性質1.不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變。2.不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變。3.不等式兩邊都乘以(或除以)同一個負數,不等號的方向改變。說明:①在一元一次不等式中,不像等式那樣,等號是不變的,是隨著加或乘的運算改變。②如果不等式乘以0,則不等號改為等號所以在題目中,要求出乘以的數,則就要看看題中是否出現一元一次不等式,如果出現了,則不等式乘以的數就不等為0,否則不等式不成立。三、一元一次不等式1.一元一次不等式的概念:一般地,不等式中只含有一個未知數,未知數的次數是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。2.解一元一次不等式的一般步驟:(1)去分母(2)去括號(3)移項(4)合并同類項(5)將x項的系數化為1四、一元一次不等式組1、一元一次不等式組的概念:幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。2、幾個一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。3、求不等式組的解集的過程,叫做解不等式組。4、當任何數x都不能使不等式同時成立,我們就說這個不等式組無解或其解為空集。5、一元一次不等式組的解法(1)分別求出不等式組中各個不等式的解集(2)利用數軸求出這些不等式的解集的公共部分,即這個不等式組的解集。練習題:P133第十章數據的收集、整理及描述10.1統計調查(一)數據的描述為了更直觀地看出上表中的信息,我們還可以用條形統計圖和扇形統計圖來描述數據。繪制條形統計圖[投影7]15155人數1020新聞動畫0節目類別體育娛樂410818繪制扇形統計圖我們知道,扇形圖用圓代表總體,每一個扇形代表總體的一部分。扇形圖通過扇形的大小來反映各個部分占總體的百分比。扇形的大小是由圓心角的大小決定的,所以,我們只要知道圓心角的度數就可以畫出代表某一部分的扇形。因為組成扇形圖的各扇形圓心角的和是3600,所以只需根據各類節目所占的百分比就可以算出對應扇形圓心角的度數。新聞:3600×10%≈360,體育:3600×25%=900,動畫:3600×20%=720,娛樂:3600×45%=1620.在一個圓中,根據算得的圓心角的度數畫出各個扇形,并注明各類節目的名稱及相應的百分比。[投影8]10%10%25%20%45%新聞體育動畫娛樂10.1統計調查(二)可以抽取一部分學生進行調查.這種只抽取一部分對象進行調查,然后根據調查數據推斷全體對象的情況的方法就是抽樣調查。這里要考查的全體對象稱為總體,組成總體的每一個考查對象稱為個體,被抽取的那些個體組成一個樣本,樣本中個體的數目稱為樣本容量。上面問題中全校學生是總體,每一名學生是個體,我們從總體中抽取的部分學生是一個樣本,抽取的學生數就是樣本容量。例如抽取100名學生,樣本容量就是100。三、樣本的抽取抽樣調查的關鍵是樣本的抽取,如果抽取的樣本得當,就能很好地反映總體的情況,否則,抽樣調查的結果會偏離總體情況。上面的問題,抽取樣本的要求是什么呢?一、抽取的學生數目要適當。如果抽取的學生數太少,則樣本就不能很好地反映總體的情況;如果抽取的學生人數太多,則達不到省時省力的目的。我們可以取100名學生作為一個樣本。二、要盡量使每一個學生抽取到的機會相等。例。四、樣本的處理表格中的數據也可以用條形統計圖和扇形統計圖來表示描述。303010人數2040新聞動畫0節目類別體育娛樂82430388%24%30%38%新聞體育動畫娛樂1、對于總體量大,個差異程度較大的問題,需要采取分層抽樣的方法確定樣本,這樣可使樣本更具有代表性。2、對樣本進行分析、歸納,得出的結論可以用來估計總體的情況,這就是統計的思想。10.2直方圖(一)收集數據、整理數據、描述數據是統計的一般過程。我們學習了條形圖、折線圖、扇形圖等描述數據的方法,今天我們學習另一種描述數據的統計圖——直方圖。二、頻數分布直方圖計算最大值及最小值的差(極差)最小值是149,最大值是172,它們的差是23。說明身高的變化范圍是23㎝.2、決定組距及組數把所有的數據分成若干組,每個小組的兩個端點之間的距離(組內數據的取值范圍)稱為組距。作等距分組(各組的組距相同),取組距為3㎝(從最小值起每隔3㎝作為一組)。將數據分成8組:149≤x<152,152≤x<155,…,170≤x<173.注意:①根據問題的需要各組的組距可以相同或不同;②組距和組數的確定沒有固定的標準,要憑借經驗和所研究的具體問題來決定;③當數據在100個以內時,按照數據的多少,常分成5~12組,一般數據越多分的組數也越多。3、頻數分布表對落在各個小組內的數據進行累計,得到各個小組內的數據的個數(叫做頻數)。用表格整理可得頻數分布表:4、畫頻數分布直方圖為了更
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西方國家的經濟政策與政治考量試題及答案
- 教育政策中的公平與效率問題探討試題及答案
- 探討西方國家的科技與治理關系試題及答案
- 機電系統集成考題及答案
- 西方國家意識形態的變遷分析試題及答案
- 機電工程加工工藝試題及答案
- 軟考網絡工程師綜合素質試題及答案分析
- 項目收尾與總結階段試題及答案
- 如何促進政府決策的透明與開放試題及答案
- 社會保障政策考試試題及答案
- 爆炸賠償協議書
- 致2025屆高考生高二到高三如何順利轉型
- 2025年高考數學二輪熱點題型歸納與演練(上海專用)專題06數列(九大題型)(原卷版+解析)
- 國開政治經濟學形考任務1-4試題及答案
- 2025年下半年浙江嘉興市水務投資集團限公司招聘92人易考易錯模擬試題(共500題)試卷后附參考答案
- 2025我國生產性服務業較快發展背后仍需關注三大問題
- 2025年下半年廣州南沙區南沙街招考雇員易考易錯模擬試題(共500題)試卷后附參考答案
- 河北開放大學2025年《醫用基礎化學#》形考任務3答案
- 【課件】(二)聽覺課件-2024-2025學年冀少版生物七年級下冊
- 《ISO 37001-2025 反賄賂管理體系要求及使用指南》專業解讀和應用培訓指導材料之6:8運行(雷澤佳編制-2025A0)
- 計算機網絡實習報告3000字范文
評論
0/150
提交評論