標準解讀
《GB/T 44234-2024 納米技術 納米材料與氣體表界面作用熱力學參數和動力學參數測量 諧振微質量法》這一標準主要規定了利用諧振微質量技術來測定納米材料與其表面吸附氣體之間的熱力學及動力學參數的方法、程序、設備要求和數據處理方法。此標準適用于研究納米尺度材料在不同氣體環境中的相互作用特性,對于理解納米材料的物理化學性質、開發新材料及優化相關應用具有重要意義。
標準內容概覽:
-
范圍:明確了該標準適用的納米材料類型及其與氣體分子在表界面作用時,如何通過諧振微質量技術來測量相關的熱力學(如吸附焓、熵變)和動力學(如吸附速率常數、解吸動力學)參數。
-
規范性引用文件:列出了實施本標準時所依據或參考的其他國家標準或國際標準,確保測試方法的標準化和可比性。
-
術語和定義:對涉及的關鍵術語進行了解釋,如諧振微質量傳感器、吸附量、熱力學穩定性等,以便讀者準確理解標準內容。
-
原理:闡述了諧振微質量法的基本工作原理,即通過監測納米材料吸附氣體前后諧振器頻率的變化,來推算吸附物質的質量變化,進而計算出熱力學和動力學參數。
-
儀器設備與試劑:詳細描述了進行此類測量所需的儀器設備規格、性能要求以及實驗中應使用的氣體純度等,確保實驗結果的準確性和重復性。
-
樣品制備與處理:規定了納米材料樣品的制備方法、處理步驟及必要的預處理條件,以保證測試樣品的代表性。
-
測量步驟與方法:詳細說明了實驗操作流程,包括傳感器的校準、氣體環境的控制、數據采集周期、以及如何根據測量數據計算熱力學和動力學參數的具體算法。
-
數據處理與分析:提供了數據處理的標準化方法,包括如何校正背景信號、處理噪聲數據、以及如何通過數學模型擬合得到所需參數。
-
試驗報告:規定了試驗報告應包含的信息內容,如實驗條件、測試結果、數據分析及結論,確保實驗記錄的完整性和透明度。
實施意義:
該標準的出臺為納米材料與氣體相互作用的研究提供了一套統一、科學的測量方法,有助于促進納米科技領域內研究成果的共享與驗證,推動材料科學、環境保護、能源存儲與轉化等相關領域的技術創新與發展。
如需獲取更多詳盡信息,請直接參考下方經官方授權發布的權威標準文檔。
....
查看全部
- 現行
- 正在執行有效
- 2024-08-23 頒布
- 2025-03-01 實施





文檔簡介
ICS
17.200
CCS
A42
中華人民共和國國家標準
GB/T44234—2024
納米技術納米材料與氣體表界面作用
熱力學參數和動力學參數測量
諧振微質量法
Nanotechnology—Measurementofthermodynamicandkineticparametersof
interfaceinteractionbetweennanomaterialsandgases—Microgravimetric
analysismethod
2024-08-23發布2025-03-01實施
國家市場監督管理總局發布
國家標準化管理委員會
GB/T44234—2024
目次
前言
·····································································································
Ⅲ
引言
·····································································································
Ⅳ
1
范圍
··································································································
1
2
規范性引用文件
······················································································
1
3
術語和定義
···························································································
1
4
符號
··································································································
2
5
方法原理
······························································································
3
5.1
諧振式微懸臂梁的工作原理
·····································································
3
5.2
熱力學參數與動力學參數的計算
································································
3
6
儀器和設備
···························································································
4
6.1
測試裝置
·························································································
4
6.2
動態配氣系統
····················································································
4
6.3
恒溫箱
···························································································
4
6.4
接口電路和控制系統
·············································································
5
6.5
諧振式微懸臂梁
·················································································
5
7
測試樣品和試劑
······················································································
5
7.1
測試樣品
·························································································
5
7.2
稀釋氣
···························································································
5
7.3
測試氣
···························································································
5
7.4
分散劑
···························································································
5
8
測試方法
······························································································
6
8.1
標準測試條件
····················································································
6
8.2
樣品涂覆
·························································································
6
8.3
樣品測試
·························································································
6
9
數據處理
······························································································
6
9.1
熱力學參數
······················································································
6
9.2
動力學參數─活化能Ea
·······································································
8
10
測試報告
····························································································
8
附錄A(資料性)介孔納米顆粒材料吸附熱力學參數的測量實例
···································
9
附錄B(資料性)納米材料吸附動力學參數的測量實例
············································
13
附錄C(資料性)測試報告格式
·····································································
16
參考文獻
································································································
17
Ⅰ
GB/T44234—2024
前言
本文件按照GB/T1.1—2020《標準化工作導則第1部分:標準化文件的結構和起草規則》的規
定起草。
請注意本文件的某些內容可能涉及專利。本文件的發布機構不承擔識別專利的責任。
本文件由中國科學院提出。
本文件由全國納米技術標準化技術委員會(SAC/TC279)歸口。
本文件起草單位:中國科學院上海微系統與信息技術研究所、國家納米科學中心、廈門海恩邁科技
有限公司、上海納米技術及應用國家工程研究中心有限公司、同濟大學、中國計量科學研究院。
本文件主要起草人:李昕欣、許鵬程、于海濤、葛廣路、程鑫彬、何丹農、任玲玲、朱君、金涵。
Ⅲ
GB/T44234—2024
引言
基于界面分子作用的功能納米材料,在信息獲取、生態環境、新能源和健康醫療等領域應用十分廣
泛。本文件描述了一種利用諧振微懸臂梁作為核心測量工具的諧振微質量法,目的是為納米材料與氣體
界面作用熱力學參數和動力學參數的獲取提供一種標準的測量方法。該方法能夠有效避免傳統測量方法
的問題,獲得包括焓變、熵變、吉布斯自由能、活化能等在內的熱力學參數和動力學參數,兼顧科學研
究和產業應用的需求。
Ⅳ
GB/T44234—2024
納米技術納米材料與氣體表界面作用
熱力學參數和動力學參數測量
諧振微質量法
1范圍
本文件描述了基于諧振微質量法獲得納米材料與氣體界面作用熱力學參數和動力學參數的方法,包
括方法原理、儀器和設備、測試樣品和試劑、測試方法、數據處理、測試報告。
本文件適用于熱力學參數與動力學參數的測量,包括標準焓變(ΔH°)、標準熵變(ΔS°)、標準吉
布斯自由能變(ΔG°)、活化能(Ea)等。
2規范性引用文件
下列文件中的內容通過文中的規范性引用而構成本文件必不可少的條款。其中,注日期的引用文
件,僅該日期對應的版本適用于本文件;不注日期的引用文件,其最新版本(包括所有的修改單)適用
于本文件。
GB/T2298—2010機械振動、沖擊與狀態監測詞匯
GB/T13464—2008物質熱穩定性的熱分析試驗方法
GB/T21650.2—2008壓汞法和氣體吸附法測定固體材料孔徑分布和孔隙度第2部分:氣體吸
附
溫馨提示
- 1. 本站所提供的標準文本僅供個人學習、研究之用,未經授權,嚴禁復制、發行、匯編、翻譯或網絡傳播等,侵權必究。
- 2. 本站所提供的標準均為PDF格式電子版文本(可閱讀打印),因數字商品的特殊性,一經售出,不提供退換貨服務。
- 3. 標準文檔要求電子版與印刷版保持一致,所以下載的文檔中可能包含空白頁,非文檔質量問題。
最新文檔
- DB32/T 4369-2022企業公共服務網絡平臺建設和服務規范
- DB32/T 4323-2022雙元制職業教育人才培養指南
- DB32/T 4222-2022殘疾人康復輔助器具適配服務規范
- DB32/T 4196-2022“雙隨機、一公開”監管工作規范
- DB32/T 4144-2021公共信用信息平臺運行維護管理規范
- DB32/T 3788-2020梨枯梢病監測與檢測技術規程
- DB32/T 3609-2019安全生產責任保險服務基本規范
- DB32/T 3546-2019血站消毒衛生規范
- DB32/T 3523-2019海濱木槿育苗技術規程
- DB31/T 596-2012地鐵合理通風技術管理要求
- 山東濟南歷年中考作文題與審題指導(2005-2021)
- 職業技術學院2024級工業互聯網技術專業人才培養方案
- 羅森加盟合同協議
- 2025年中考英語押題預測卷(徐州專用)(原卷版)
- 锝99mTc替曲膦注射液-藥品臨床應用解讀
- 武漢各區2023-2024學年九下化學四調壓軸題分類匯編-第8題選擇題
- 腦血管造影術的術前及術后護理
- 外墻涂料施工勞務合同范本(8篇)
- 成人重癥患者顱內壓增高防控護理專家共識2024
- 網絡災難與信息安全應急
- 音樂人類學視角-洞察分析
評論
0/150
提交評論