




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省唐山市路北區重點達標名校2023-2024學年中考沖刺卷數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列運算正確的是()A.(a2)4=a6 B.a2?a3=a6 C. D.2.股市有風險,投資需謹慎.截至今年五月底,我國股市開戶總數約95000000,正向1億挺進,95000000用科學計數法表示為()A.9.5×106 B.9.5×107 C.9.5×108 D.9.5×1093.在直角坐標系中,我們把橫、縱坐標都為整數的點叫做整點.對于一條直線,當它與一個圓的公共點都是整點時,我們把這條直線稱為這個圓的“整點直線”.已知⊙O是以原點為圓心,半徑為圓,則⊙O的“整點直線”共有()條A.7 B.8 C.9 D.104.如圖,在矩形ABCD中,P、R分別是BC和DC上的點,E、F分別是AP和RP的中點,當點P在BC上從點B向點C移動,而點R不動時,下列結論正確的是()A.線段EF的長逐漸增長 B.線段EF的長逐漸減小C.線段EF的長始終不變 D.線段EF的長與點P的位置有關5.如圖,某廠生產一種扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用紙糊的,若扇子完全打開攤平時紙面面積為πcm2,則扇形圓心角的度數為()A.120° B.140° C.150° D.160°6.-3的相反數是()A. B.3 C. D.-37.某種商品每件的標價是270元,按標價的八折銷售時,仍可獲利20%,則這種商品每件的進價為()A.180元 B.200元 C.225元 D.259.2元8.如圖所示的圖形,是下面哪個正方體的展開圖()A. B. C. D.9.單項式2a3b的次數是()A.2 B.3 C.4 D.510.下列說法正確的是()A.一個游戲的中獎概率是110B.為了解全國中學生的心理健康情況,應該采用普查的方式C.一組數據8,8,7,10,6,8,9的眾數和中位數都是8D.若甲組數據的方差S="0.01",乙組數據的方差s=0.1,則乙組數據比甲組數據穩定二、填空題(共7小題,每小題3分,滿分21分)11.把球放在長方體紙盒內,球的一部分露出盒外,其截面如圖,已知EF=CD=80cm,則截面圓的半徑為cm.12.請看楊輝三角(1),并觀察下列等式(2):根據前面各式的規律,則(a+b)6=.13.如圖,反比例函數y=的圖象上,點A是該圖象第一象限分支上的動點,連結AO并延長交另一支于點B,以AB為斜邊作等腰直角△ABC,頂點C在第四象限,AC與x軸交于點P,連結BP,在點A運動過程中,當BP平分∠ABC時,點A的坐標為_____.14.如圖,與中,,,,,AD的長為________.15.如圖,已知AB∥CD,若,則=_____.16.如果不等式組的解集是x<2,那么m的取值范圍是_____17.如圖,將三角形AOC繞點O順時針旋轉120°得三角形BOD,已知OA=4,OC=1,那么圖中陰影部分的面積為_____.(結果保留π)三、解答題(共7小題,滿分69分)18.(10分)對于平面直角坐標系xOy中的任意兩點M,N,給出如下定義:點M與點N的“折線距離”為:.例如:若點M(-1,1),點N(2,-2),則點M與點N的“折線距離”為:.根據以上定義,解決下列問題:已知點P(3,-2).①若點A(-2,-1),則d(P,A)=;②若點B(b,2),且d(P,B)=5,則b=;③已知點C(m,n)是直線上的一個動點,且d(P,C)<3,求m的取值范圍.⊙F的半徑為1,圓心F的坐標為(0,t),若⊙F上存在點E,使d(E,O)=2,直接寫出t的取值范圍.19.(5分)為滿足市場需求,某超市在五月初五“端午節”來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規定每盒售價不得少于45元.根據以往銷售經驗發現;當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數關系式;當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?為穩定物價,有關管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?20.(8分)如圖,在梯形ABCD中,AD∥BC,對角線AC、BD交于點M,點E在邊BC上,且∠DAE=∠DCB,聯結AE,AE與BD交于點F.(1)求證:;(2)連接DE,如果BF=3FM,求證:四邊形ABED是平行四邊形.21.(10分)畫出二次函數y=(x﹣1)2的圖象.22.(10分)如圖,已知點B、E、C、F在一條直線上,AB=DF,AC=DE,∠A=∠D求證:AC∥DE;若BF=13,EC=5,求BC的長.23.(12分)如圖所示,正方形網格中,△ABC為格點三角形(即三角形的頂點都在格點上).(1)把△ABC沿BA方向平移后,點A移到點A1,在網格中畫出平移后得到的△A1B1C1;(2)把△A1B1C1繞點A1按逆時針方向旋轉90°,在網格中畫出旋轉后的△A1B2C2;(3)如果網格中小正方形的邊長為1,求點B經過(1)、(2)變換的路徑總長.24.(14分)一次函數的圖象經過點和點,求一次函數的解析式.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
根據冪的乘方、同底數冪的乘法、二次根式的乘法、二次根式的加法計算即可.【詳解】A、原式=a8,所以A選項錯誤;B、原式=a5,所以B選項錯誤;C、原式=,所以C選項正確;D、與不能合并,所以D選項錯誤.故選:C.【點睛】本題考查了冪的乘方、同底數冪的乘法、二次根式的乘法、二次根式的加法,熟練掌握它們的運算法則是解答本題的關鍵.2、B【解析】試題分析:15000000=1.5×2.故選B.考點:科學記數法—表示較大的數3、D【解析】試題分析:根據圓的半徑可知:在圓上的整數點為(2,2)、(2,-2),(-2,-2),(-2,2)這四個點,經過任意兩點的“整點直線”有6條,經過其中的任意一點且圓相切的“整點直線”有4條,則合計共有10條.4、C【解析】試題分析:連接AR,根據勾股定理得出AR=的長不變,根據三角形的中位線定理得出EF=AR,即可得出線段EF的長始終不變,故選C.考點:1、矩形性質,2、勾股定理,3、三角形的中位線5、C【解析】
根據扇形的面積公式列方程即可得到結論.【詳解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,設扇形圓心角的度數為α,∵紙面面積為πcm2,∴,∴α=150°,故選:C.【點睛】本題考了扇形面積的計算的應用,解題的關鍵是熟練掌握扇形面積計算公式:扇形的面積=.6、B【解析】
根據相反數的定義與方法解答.【詳解】解:-3的相反數為.故選:B.【點睛】本題考查相反數的定義與求法,熟練掌握方法是關鍵.7、A【解析】
設這種商品每件進價為x元,根據題中的等量關系列方程求解.【詳解】設這種商品每件進價為x元,則根據題意可列方程270×0.8-x=0.2x,解得x=180.故選A.【點睛】本題主要考查一元一次方程的應用,解題的關鍵是確定未知數,根據題中的等量關系列出正確的方程.8、D【解析】
根據展開圖中四個面上的圖案結合各選項能夠看見的面上的圖案進行分析判斷即可.【詳解】A.因為A選項中的幾何體展開后,陰影正方形的頂點不在陰影三角形的邊上,與展開圖不一致,故不可能是A:B.因為B選項中的幾何體展開后,陰影正方形的頂點不在陰影三角形的邊上,與展開圖不一致,故不可能是B;C.因為C選項中的幾何體能夠看見的三個面上都沒有陰影圖家,而展開圖中有四個面上有陰影圖室,所以不可能是C.D.因為D選項中的幾何體展開后有可能得到如圖所示的展開圖,所以可能是D;故選D.【點睛】本題考查了學生的空間想象能力,解決本題的關鍵突破口是掌握正方體的展開圖特征.9、C【解析】分析:根據單項式的性質即可求出答案.詳解:該單項式的次數為:3+1=4故選C.點睛:本題考查單項式的次數定義,解題的關鍵是熟練運用單項式的次數定義,本題屬于基礎題型.10、C【解析】
眾數,中位數,方差等概念分析即可.【詳解】A、中獎是偶然現象,買再多也不一定中獎,故是錯誤的;B、全國中學生人口多,只需抽樣調查就行了,故是錯誤的;C、這組數據的眾數和中位數都是8,故是正確的;D、方差越小越穩定,甲組數據更穩定,故是錯誤.故選C.【點睛】考核知識點:眾數,中位數,方差.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
過點O作OM⊥EF于點M,反向延長OM交BC于點N,連接OF,設OF=r,則OM=80-r,MF=40,然后在Rt△MOF中利用勾股定理求得OF的長即可.【詳解】過點O作OM⊥EF于點M,反向延長OM交BC于點N,連接OF,設OF=x,則OM=80﹣r,MF=40,在Rt△OMF中,∵OM2+MF2=OF2,即(80﹣r)2+402=r2,解得:r=1cm.故答案為1.12、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.【解析】
通過觀察可以看出(a+b)2的展開式為2次7項式,a的次數按降冪排列,b的次數按升冪排列,各項系數分別為2、2、25、20、25、2、2.【詳解】通過觀察可以看出(a+b)2的展開式為2次7項式,a的次數按降冪排列,b的次數按升冪排列,各項系數分別為2、2、25、20、25、2、2.所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.13、(,)【解析】分析:連接OC,過點A作AE⊥x軸于E,過點C作CF⊥x軸于F,則有△AOE≌△OCF,進而可得出AE=OF、OE=CF,根據角平分線的性質可得出,設點A的坐標為(a,)(a>0),由可求出a值,進而得到點A的坐標.詳解:連接OC,過點A作AE⊥x軸于E,過點C作CF⊥x軸于F,如圖所示.∵△ABC為等腰直角三角形,∴OA=OC,OC⊥AB,∴∠AOE+∠COF=90°.∵∠COF+∠OCF=90°,∴∠AOE=∠OCF.在△AOE和△OCF中,,∴△AOE≌△OCF(AAS),∴AE=OF,OE=CF.∵BP平分∠ABC,∴,∴.設點A的坐標為(a,),∴,解得:a=或a=-(舍去),∴=,∴點A的坐標為(,),故答案為:((,)).點睛:本題考查了反比例函數圖象上點的坐標特征、全等三角形的判定與性質、角平分線的性質以及等腰直角三角形性質的綜合運用,構造全等三角形,利用全等三角形的對應邊相等是解題的關鍵.14、【解析】
先證明△ABC∽△ADB,然后根據相似三角形的判定與性質列式求解即可.【詳解】∵,,∴△ABC∽△ADB,∴,∵,,∴,∴AD=.故答案為:.【點睛】本題考查了相似三角形的判定與性質:在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.靈活運用相似三角形的性質進行幾何計算.15、【解析】【分析】利用相似三角形的性質即可解決問題;【詳解】∵AB∥CD,∴△AOB∽△COD,∴,故答案為.【點睛】本題考查平行線的性質,相似三角形的判定和性質等知識,熟練掌握相似三角形的判定與性質是解題的關鍵.16、m≥1.【解析】分析:先解第一個不等式,再根據不等式組的解集是x<1,從而得出關于m的不等式,解不等式即可.詳解:解第一個不等式得,x<1,∵不等式組的解集是x<1,∴m≥1,故答案為m≥1.點睛:本題是已知不等式組的解集,求不等式中字母取值范圍的問題.可以先將字母當作已知數處理,求出解集與已知解集比較,進而求得字母的范圍.求不等式的公共解,要遵循以下原則:同大取較大,同小取較小,大小小大中間找,大大小小解不了.17、5π【解析】
根據旋轉的性質可以得到陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積,利用扇形的面積公式計算即可求解.【詳解】∵△AOC≌△BOD,∴陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積5π.故答案為:5π.【點睛】本題考查了旋轉的性質以及扇形的面積公式,正確理解:陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)①6,②2或4,③1<m<4;(2)或.【解析】
(1)①根據“折線距離”的定義直接列式計算;②根據“折線距離”的定義列出方程,求解即可;③根據“折線距離”的定義列出式子,可知其幾何意義是數軸上表示數m的點到表示數3的點的距離與到表示數2的點的距離之和小于3.(2)由題意可知,根據圖像易得t的取值范圍.【詳解】解:(1)①②∴∴b=2或4③,即數軸上表示數m的點到表示數3的點的距離與到表示數2的點的距離之和小于3,所以1<m<4(2)設E(x,y),則,如圖,若點E在⊙F上,則.【點睛】本題主要考查坐標與圖形,正確理解新定義及其幾何意義,利用數形結合的思想思考問題是解題關鍵.19、(1)y=﹣20x+1600;(2)當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元;(3)超市每天至少銷售粽子440盒.【解析】試題分析:(1)根據“當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒”即可得出每天的銷售量y(盒)與每盒售價x(元)之間的函數關系式;(2)根據利潤=1盒粽子所獲得的利潤×銷售量列式整理,再根據二次函數的最值問題解答;(3)先由(2)中所求得的P與x的函數關系式,根據這種粽子的每盒售價不得高于58元,且每天銷售粽子的利潤不低于6000元,求出x的取值范圍,再根據(1)中所求得的銷售量y(盒)與每盒售價x(元)之間的函數關系式即可求解.試題解析:(1)由題意得,==;(2)P===,∵x≥45,a=﹣20<0,∴當x=60時,P最大值=8000元,即當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元;(3)由題意,得=6000,解得,,∵拋物線P=的開口向下,∴當50≤x≤70時,每天銷售粽子的利潤不低于6000元的利潤,又∵x≤58,∴50≤x≤58,∵在中,<0,∴y隨x的增大而減小,∴當x=58時,y最小值=﹣20×58+1600=440,即超市每天至少銷售粽子440盒.考點:二次函數的應用.20、(1)證明見解析;(2)證明見解析.【解析】分析:(1)由AD∥BC可得出∠DAE=∠AEB,結合∠DCB=∠DAE可得出∠DCB=∠AEB,進而可得出AE∥DC、△AMF∽△CMD,根據相似三角形的性質可得出=,根據AD∥BC,可得出△AMD∽△CMB,根據相似三角形的性質可得出=,進而可得出=,即MD2=MF?MB;(2)設FM=a,則BF=3a,BM=4a.由(1)的結論可求出MD的長度,代入DF=DM+MF可得出DF的長度,由AD∥BC,可得出△AFD∽△△EFB,根據相似三角形的性質可得出AF=EF,利用“對角線互相平分的四邊形是平行四邊形”即可證出四邊形ABED是平行四邊形.詳解:(1)∵AD∥BC,∴∠DAE=∠AEB.∵∠DCB=∠DAE,∴∠DCB=∠AEB,∴AE∥DC,∴△AMF∽△CMD,∴=.∵AD∥BC,∴△AMD∽△CMB,∴==,即MD2=MF?MB.(2)設FM=a,則BF=3a,BM=4a.由MD2=MF?MB,得:MD2=a?4a,∴MD=2a,∴DF=BF=3a.∵AD∥BC,∴△AFD∽△△EFB,∴==1,∴AF=EF,∴四邊形ABED是平行四邊形.點睛:本題考查了相似三角形的判定與性質、平行四邊形的判定、平行線的性質以及矩形,解題的關鍵是:(1)利用相似三角形的性質找出=、=;(2)牢記“對角線互相平分的四邊形是平行四邊形”.21、見解析【解析】
首先可得頂點坐標為(1,0),然后利用對稱性列表,再描點,連線,即可作出該函數的圖象.【詳解】列表得:x…﹣10123…y…41014…如圖:.【點睛】此題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論