




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某人造地球衛星的運行軌道是以地心為一個焦點的橢圓,其軌道的離心率為,設地球半徑為,該衛星近地點離地面的距離為,則該衛星遠地點離地面的距離為()A. B.C. D.2.已知表示兩條不同的直線,表示兩個不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要3.若雙曲線的離心率,則該雙曲線的焦點到其漸近線的距離為()A. B.2 C. D.14.已知函數,則的值等于()A.2018 B.1009 C.1010 D.20205.各項都是正數的等比數列的公比,且成等差數列,則的值為()A. B.C. D.或6.已知平面向量,,,則實數x的值等于()A.6 B.1 C. D.7.設曲線在點處的切線方程為,則()A.1 B.2 C.3 D.48.已知,是函數圖像上不同的兩點,若曲線在點,處的切線重合,則實數的最小值是()A. B. C. D.19.已知F是雙曲線(k為常數)的一個焦點,則點F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.210.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.11.對兩個變量進行回歸分析,給出如下一組樣本數據:,,,,下列函數模型中擬合較好的是()A. B. C. D.12.金庸先生的武俠小說《射雕英雄傳》第12回中有這樣一段情節,“……洪七公道:肉只五種,但豬羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有幾般變化,我可算不出了”.現有五種不同的肉,任何兩種(含兩種)以上的肉混合后的滋味都不一樣,則混合后可以組成的所有不同的滋味種數為()A.20 B.24 C.25 D.26二、填空題:本題共4小題,每小題5分,共20分。13.以,為圓心的兩圓均過,與軸正半軸分別交于,,且滿足,則點的軌跡方程為_________.14.已知的展開式中項的系數與項的系數分別為135與,則展開式所有項系數之和為______.15.已知函數若關于的不等式的解集是,則的值為_____.16.實數滿足,則的最大值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)等差數列中,.(1)求的通項公式;(2)設,記為數列前項的和,若,求.18.(12分)已知等差數列的公差,且,,成等比數列.(1)求數列的通項公式;(2)設,求數列的前項和.19.(12分)在中,角所對的邊分別是,且.(1)求角的大小;(2)若,求邊長.20.(12分)設函數.(1)若,求函數的值域;(2)設為的三個內角,若,求的值;21.(12分)設函數,,.(1)求函數的單調區間;(2)若函數有兩個零點,().(i)求的取值范圍;(ii)求證:隨著的增大而增大.22.(10分)在中,內角的對邊分別是,已知.(1)求角的值;(2)若,,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
由題意畫出圖形,結合橢圓的定義,結合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛星遠地點離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設衛星近地點,遠地點離地面距離分別為r,n,如圖:則所以,,故選:A【點睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關鍵,屬于中檔題.2.B【解析】
根據充分必要條件的概念進行判斷.【詳解】對于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點睛】本題主要考查空間中線線,線面,面面的位置關系,以及充要條件的判斷,考查學生綜合運用知識的能力.解決充要條件判斷問題,關鍵是要弄清楚誰是條件,誰是結論.3.C【解析】
根據雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點坐標為,所以,則雙曲線漸近線方程為,即,不妨取右焦點,則由點到直線距離公式可得,故選:C.【點睛】本題考查了雙曲線的幾何性質及簡單應用,漸近線方程的求法,點到直線距離公式的簡單應用,屬于基礎題.4.C【解析】
首先,根據二倍角公式和輔助角公式化簡函數解析式,根據所求函數的周期性,得到其周期為4,然后借助于三角函數的周期性確定其值即可.【詳解】解:.,,的周期為,,,,,..故選:C【點睛】本題重點考查了三角函數的圖象與性質、三角恒等變換等知識,掌握輔助角公式化簡函數解析式是解題的關鍵,屬于中檔題.5.C【解析】分析:解決該題的關鍵是求得等比數列的公比,利用題中所給的條件,建立項之間的關系,從而得到公比所滿足的等量關系式,解方程即可得結果.詳解:根據題意有,即,因為數列各項都是正數,所以,而,故選C.點睛:該題應用題的條件可以求得等比數列的公比,而待求量就是,代入即可得結果.6.A【解析】
根據向量平行的坐標表示即可求解.【詳解】,,,,即,故選:A【點睛】本題主要考查了向量平行的坐標運算,屬于容易題.7.D【解析】
利用導數的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因為,且在點處的切線的斜率為3,所以,即.故選:D【點睛】本題考查導數的幾何意義,考查運算求解能力,是基礎題8.B【解析】
先根據導數的幾何意義寫出在兩點處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關系樹,從而得出,令函數,結合導數求出最小值,即可選出正確答案.【詳解】解:當時,,則;當時,則.設為函數圖像上的兩點,當或時,,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設則,由可得則當時,的最大值為.則在上單調遞減,則.故選:B.【點睛】本題考查了導數的幾何意義,考查了推理論證能力,考查了函數與方程、分類與整合、轉化與化歸等思想方法.本題的難點是求出和的函數關系式.本題的易錯點是計算.9.D【解析】
分析可得,再去絕對值化簡成標準形式,進而根據雙曲線的性質求解即可.【詳解】當時,等式不是雙曲線的方程;當時,,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎題.10.D【解析】
設非零向量與的夾角為,在等式兩邊平方,求出的值,進而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點睛】本題考查向量投影的計算,同時也考查利用向量的模計算向量的夾角,考查計算能力,屬于基礎題.11.D【解析】
作出四個函數的圖象及給出的四個點,觀察這四個點在靠近哪個曲線.【詳解】如圖,作出A,B,C,D中四個函數圖象,同時描出題中的四個點,它們在曲線的兩側,與其他三個曲線都離得很遠,因此D是正確選項,故選:D.【點睛】本題考查回歸分析,擬合曲線包含或靠近樣本數據的點越多,說明擬合效果好.12.D【解析】
利用組合的意義可得混合后所有不同的滋味種數為,再利用組合數的計算公式可得所求的種數.【詳解】混合后可以組成的所有不同的滋味種數為(種),故選:D.【點睛】本題考查組合的應用,此類問題注意實際問題的合理轉化,本題屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據圓的性質可知在線段的垂直平分線上,由此得到,同理可得,由對數運算法則可知,從而化簡得到,由此確定軌跡方程.【詳解】,,和的中點坐標為,且在線段的垂直平分線上,,即,同理可得:,,,點的軌跡方程為.故答案為:.【點睛】本題考查動點軌跡方程的求解問題,關鍵是能夠利用圓的性質和對數運算法則構造出滿足的方程,由此得到結果.14.64【解析】
由題意先求得的值,再令求出展開式中所有項的系數和.【詳解】的展開式中項的系數與項的系數分別為135與,,,由兩式可組成方程組,解得或,令,求得展開式中所有的系數之和為.故答案為:64【點睛】本題考查了二項式定理,考查了賦值法求多項式展開式的系數和,屬于基礎題.15.【解析】
根據題意可知的兩根為,再根據解集的區間端點得出參數的關系,再求解即可.【詳解】解:因為函數,關于的不等式的解集是的兩根為:和;所以有:且;且;;故答案為:【點睛】本題主要考查了不等式的解集與參數之間的關系,屬于基礎題.16..【解析】
畫出可行域,解出可行域的頂點坐標,代入目標函數求出相應的數值,比較大小得到目標函數最值.【詳解】解:作出可行域,如圖所示,則當直線過點時直線的截距最大,z取最大值.由同理,,取最大值.故答案為:.【點睛】本題考查線性規劃的線性目標函數的最優解問題.線性目標函數的最優解一般在平面區域的頂點或邊界處取得,所以對于一般的線性規劃問題,若可行域是一個封閉的圖形,我們可以直接解出可行域的頂點,然后將坐標代入目標函數求出相應的數值,從而確定目標函數的最值;若可行域不是封閉圖形還是需要借助截距的幾何意義來求最值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)由基本量法求出公差后可得通項公式;(2)由等差數列前項和公式求得,可求得.【詳解】解:(1)設的公差為,由題設得因為,所以解得,故.(2)由(1)得.所以數列是以2為首項,2為公比的等比數列,所以,由得,解得.【點睛】本題考查求等差數列的通項公式和等比數列的前項和公式,解題方法是基本量法.18.(1);(2).【解析】
(1)根據等比中項性質可構造方程求得,由等差數列通項公式可求得結果;(2)由(1)可得,可知為等比數列,利用分組求和法,結合等差和等比數列求和公式可求得結果.【詳解】(1)成等比數列,,即,,解得:,.(2)由(1)得:,,,數列是首項為,公比為的等比數列,.【點睛】本題考查等差數列通項公式的求解、分組求和法求解數列的前項和的問題;關鍵是能夠根據通項公式證得數列為等比數列,進而采用分組求和法,結合等差和等比數列求和公式求得結果.19.(1);(2).【解析】
(1)把代入已知條件,得到關于的方程,得到的值,從而得到的值.(2)由(1)中得到的的值和已知條件,求出,再根據正弦定理求出邊長.【詳解】(1)因為,,所以,,所以,即.因為,所以,因為,所以.(2).在中,由正弦定理得,所以,解得.【點睛】本題考查三角函數公式的運用,正弦定理解三角形,屬于簡單題.20.(1)(2)【解析】
(1)將,利用三角恒等變換轉化為:,,再根據正弦函數的性質求解,(2)根據,得,又為的內角,得到,再根據,利用兩角和與差的余弦公式求解,【詳解】(1),,,,即的值域為;(2)由,得,又為的內角,所以,又因為在中,,所以,所以.【點睛】本題主要考查三角恒等變換和三角函數的性質,還考查了運算求解的能力,屬于中檔題,21.(1)見解析;(2)(i)(ii)證明見解析【解析】
(1)求出導函數,分類討論即可求解;(2)(i)結合(1)的單調性分析函數有兩個零點求解參數取值范圍;(ii)設,通過轉化,討論函數的單調性得證.【詳解】(1)因為,所以當時,在上恒成立,所以在上單調遞增,當時,的解集為,的解集為,所以的單調增區間為,的單調減區間為;(2)(i)由(1)可知,當時,在上單調遞增,至多一個零點,不符題意,當時,因為有兩個零點,所以,解得,因為,且,所以存在,使得,又因為,設,則,所以單調遞增,所以,即,因為,所以存在,使得,綜上,;(ii)因為,所以,因為,所以,設,則,所以,解得,所以,所以,設,則,設,則,所以單調遞增,所以,所以,即,所以單調遞增,即隨著的增大而
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 強化子公司管理制度
- 形成痕跡化管理制度
- 征地拆遷辦管理制度
- 德云社名片管理制度
- 志愿團成員管理制度
- 快遞店運營管理制度
- 急危重搶救管理制度
- 總經理怎樣管理制度
- 想投訴學校管理制度
- 戒毒局歸誰管理制度
- 《重癥醫學科建設與管理指南(試行)》
- 醫用耗材一次性使用申請表
- GB/T 42068-2022農村產權流轉交易市場建設和管理規范
- 第五課古典芭蕾(芭蕾舞鼎盛時期)
- 中小學生肥胖調查表
- 胃癌HER2判讀及評分課件
- 學校機房網絡規劃與設計
- 中儲糧警示教育心得體會三篇
- 船用空調電氣控制系統簡介課件
- 2009-2022歷年河北省公安廳高速交警總隊招聘考試真題含答案帶詳解2022-2023上岸資料匯編3
- 遙控器檢驗作業指導書
評論
0/150
提交評論