




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省運城市運康中學2024屆中考二模數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,數軸上有三個點A、B、C,若點A、B表示的數互為相反數,則圖中點C對應的數是()A.﹣2 B.0 C.1 D.42.如圖所示的幾何體的俯視圖是(
)A. B. C. D.3.的負倒數是()A. B.- C.3 D.﹣34.如圖,四邊形ABCD內接于⊙O,若四邊形ABCO是平行四邊形,則∠ADC的大小為()A. B. C. D.5.如圖,在Rt△ABC中,∠B=90o,AB=6,BC=8,點D在BC上,以AC為對角線的所有□ADCE中,DE的最小值是(
)A.4 B.6 C.8 D.106.如果一元二次方程2x2+3x+m=0有兩個相等的實數根,那么實數m的取值為()A.m> B.m C.m= D.m=7.如圖,在中,E為邊CD上一點,將沿AE折疊至處,與CE交于點F,若,,則的大小為()A.20° B.30° C.36° D.40°8.計算2a2+3a2的結果是()A.5a4 B.6a2 C.6a4 D.5a29.的相反數是A.4 B. C. D.10.如圖是某公園的一角,∠AOB=90°,弧AB的半徑OA長是6米,C是OA的中點,點D在弧AB上,CD∥OB,則圖中休閑區(陰影部分)的面積是()A.米2 B.米2 C.米2 D.米2二、填空題(本大題共6個小題,每小題3分,共18分)11.關于x的一元二次方程(k-1)x2-2x+1=0有兩個不相等的實數根,則實數k的取值范圍是_______.12.當關于x的一元二次方程ax2+bx+c=0有實數根,且其中一個根為另一個根的2倍時,稱之為“倍根方程”.如果關于x的一元二次方程x2+(m﹣2)x﹣2m=0是“倍根方程”,那么m的值為_____.13.(11·湖州)如圖,已知A、B是反比例函數(k>0,x<0)圖象上的兩點,BC∥x軸,交y軸于點C.動點P從坐標原點O出發,沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C.過P作PM⊥x軸,PN⊥y軸,垂足分別為M、N.設四邊形OMPN的面積為S,P點運動時間為t,則S關于t的函數圖象大致為14.如果實數x、y滿足方程組,求代數式(+2)÷.15.分解因式:ax2﹣2ax+a=___________.16.如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半徑為1,點P是斜邊AB上的點,過點P作⊙C的一條切線PQ(點Q是切點),則線段PQ的最小值為_____.三、解答題(共8題,共72分)17.(8分)已知關于x,y的二元一次方程組的解為,求a、b的值.18.(8分)講授“軸對稱”時,八年級教師設計了如下:四種教學方法:①教師講,學生聽②教師讓學生自己做③教師引導學生畫圖發現規律④教師讓學生對折紙,觀察發現規律,然后畫圖為調查教學效果,八年級教師將上述教學方法作為調研內容發到全年級8個班420名同學手中,要求每位同學選出自己最喜歡的一種.他隨機抽取了60名學生的調查問卷,統計如圖(1)請將條形統計圖補充完整;(2)計算扇形統計圖中方法③的圓心角的度數是;(3)八年級同學中最喜歡的教學方法是哪一種?選擇這種教學方法的約有多少人?19.(8分)為了提高中學生身體素質,學校開設了A:籃球、B:足球、C:跳繩、D:羽毛球四種體育活動,為了解學生對這四種體育活動的喜歡情況,在全校隨機抽取若干名學生進行問卷調查(每個被調查的對象必須選擇而且只能在四種體育活動中選擇一種),將數據進行整理并繪制成以下兩幅統計圖(未畫完整).這次調查中,一共調查了________名學生;請補全兩幅統計圖;若有3名喜歡跳繩的學生,1名喜歡足球的學生組隊外出參加一次聯誼活動,欲從中選出2人擔任組長(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學生的概率.20.(8分)定義:在三角形中,把一邊的中點到這條邊的高線的距離叫做這條邊的中垂距.例:如圖①,在△ABC中,D為邊BC的中點,AE⊥BC于E,則線段DE的長叫做邊BC的中垂距.(1)設三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是,推斷的數學依據是.(2)如圖②,在△ABC中,∠B=15°,AB=3,BC=8,AD為邊BC的中線,求邊BC的中垂距.(3)如圖③,在矩形ABCD中,AB=6,AD=1.點E為邊CD的中點,連結AE并延長交BC的延長線于點F,連結AC.求△ACF中邊AF的中垂距.21.(8分)《九章算術》中有這樣一道題,原文如下:今有甲乙二人持錢不知其數.甲得乙半而錢五十,乙得甲太半而錢亦五十.問甲、乙持錢各幾何?大意為:今有甲、乙二人,不知其錢包里有多少錢.若乙把其一半的錢給甲,則甲的錢數為;若甲把其的錢給乙,則乙的錢數也能為,問甲、乙各有多少錢?請解答上述問題.22.(10分)某校為了解全校學生對新聞、體育、動畫、娛樂、戲曲五類電視節目的喜愛情況,隨機選取該校部分學生進行調查,要求每名學生從中選出一類最喜愛的電視節目,以下是根據調查結果繪制的不完整統計表:節目代號ABCDE節目類型新聞體育動畫娛樂戲曲喜愛人數1230m549請你根據以上的信息,回答下列問題:(1)被調查學生的總數為人,統計表中m的值為.扇形統計圖中n的值為;(2)被調查學生中,最喜愛電視節目的“眾數”;(3)該校共有2000名學生,根據調查結果,估計該校最喜愛新聞節目的學生人數.23.(12分)在“傳箴言”活動中,某班團支部對該班全體團員在一個月內所發箴言條數的情況進行了統計,并制成了如圖所示的兩幅不完整的統計圖:求該班團員在這一個月內所發箴言的平均條數是多少?并將該條形統計圖補充完整;如果發了3條箴言的同學中有兩位男同學,發了4條箴言的同學中有三位女同學.現要從發了3條箴言和4條箴言的同學中分別選出一位參加該校團委組織的“箴言”活動總結會,請你用列表法或樹狀圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.24.為了弘揚學生愛國主義精神,充分展現新時期青少年良好的思想道德素質和精神風貌,豐富學生的校園生活,陶冶師生的情操,某校舉辦了“中國夢?愛國情?成才志”中華經典詩文誦讀比賽.九(1)班通過內部初選,選出了麗麗和張強兩位同學,但學校規定每班只有1個名額,經過老師與同學們商量,用所學的概率知識設計摸球游戲決定誰去,設計的游戲規則如下:在A、B兩個不透明的箱子分別放入黃色和白色兩種除顏色外均相同的球,其中A箱中放置3個黃球和2個白球;B箱中放置1個黃球,3個白球,麗麗從A箱中摸一個球,張強從B箱摸一個球進行試驗,若兩人摸出的兩球都是黃色,則麗麗去;若兩人摸出的兩球都是白色,則張強去;若兩人摸出球顏色不一樣,則放回重復以上動作,直到分出勝負為止.根據以上規則回答下列問題:(1)求一次性摸出一個黃球和一個白球的概率;(2)判斷該游戲是否公平?并說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】【分析】首先確定原點位置,進而可得C點對應的數.【詳解】∵點A、B表示的數互為相反數,AB=6∴原點在線段AB的中點處,點B對應的數為3,點A對應的數為-3,又∵BC=2,點C在點B的左邊,∴點C對應的數是1,故選C.【點睛】本題主要考查了數軸,關鍵是正確確定原點位置.2、B【解析】
根據俯視圖是從上往下看得到的圖形解答即可.【詳解】從上往下看得到的圖形是:故選B.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線3、D【解析】
根據倒數的定義,互為倒數的兩數乘積為1,2×=1.再求出2的相反數即可解答.【詳解】根據倒數的定義得:2×=1.
因此的負倒數是-2.
故選D.【點睛】本題考查了倒數,解題的關鍵是掌握倒數的概念.4、C【解析】
根據平行四邊形的性質和圓周角定理可得出答案.【詳解】根據平行四邊形的性質可知∠B=∠AOC,根據圓內接四邊形的對角互補可知∠B+∠D=180°,根據圓周角定理可知∠D=∠AOC,因此∠B+∠D=∠AOC+∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故選C【點睛】該題主要考查了圓周角定理及其應用問題;應牢固掌握該定理并能靈活運用.5、B【解析】
平行四邊形ADCE的對角線的交點是AC的中點O,當OD⊥BC時,OD最小,即DE最小,根據三角形中位線定理即可求解.【詳解】平行四邊形ADCE的對角線的交點是AC的中點O,當OD⊥BC時,OD最小,即DE最小。∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位線,∴OD=AB=3,∴DE=2OD=6.故選:B.【點睛】本題考查了平行四邊形的性質,解題的關鍵是利用三角形中位線定理進行求解.6、C【解析】試題解析:∵一元二次方程2x2+3x+m=0有兩個相等的實數根,∴△=32-4×2m=9-8m=0,解得:m=.故選C.7、C【解析】
由平行四邊形的性質得出∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質求出∠AEF=72°,由三角形內角和定理求出∠AED′=108°,即可得出∠FED′的大小.【詳解】∵四邊形ABCD是平行四邊形,∴,由折疊的性質得:,,∴,,∴;故選C.【點睛】本題考查了平行四邊形的性質、折疊的性質、三角形的外角性質以及三角形內角和定理;熟練掌握平行四邊形的性質和折疊的性質,求出∠AEF和∠AED′是解決問題的關鍵.8、D【解析】
直接合并同類項,合并同類項時,把同類項的系數相加,所得和作為合并后的系數,字母和字母的指數不變.【詳解】2a2+3a2=5a2.故選D.【點睛】本題考查了利用同類項的定義及合并同類項,熟練掌握合并同類項的方法是解答本題的關鍵.所含字母相同,并且相同字母的指數也相同的項,叫做同類項;合并同類項時,把同類項的系數相加,所得和作為合并后的系數,字母和字母的指數不變.9、A【解析】
直接利用相反數的定義結合絕對值的定義分析得出答案.【詳解】-1的相反數為1,則1的絕對值是1.故選A.【點睛】本題考查了絕對值和相反數,正確把握相關定義是解題的關鍵.10、C【解析】
連接OD,∵弧AB的半徑OA長是6米,C是OA的中點,∴OC=OA=×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴.又∵,∴∠DOC=60°.∴(米2).故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、k<2且k≠1【解析】試題解析:∵關于x的一元二次方程(k-1)x2-2x+1=0有兩個不相等的實數根,∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k<2且k≠1.考點:1.根的判別式;2.一元二次方程的定義.12、-1或-4【解析】分析:設“倍根方程”的一個根為,則另一根為,由一元二次方程根與系數的關系可得,由此可列出關于m的方程,解方程即可求得m的值.詳解:由題意設“倍根方程”的一個根為,另一根為,則由一元二次方程根與系數的關系可得:,∴,∴,化簡整理得:,解得.故答案為:-1或-4.點睛:本題解題的關鍵是熟悉一元二次方程根與系數的關系:若一元二次方程的兩根分別為,則.13、A【解析】試題分析:①當點P在OA上運動時,OP=t,S=OM?PM=tcosα?tsinα,α角度固定,因此S是以y軸為對稱軸的二次函數,開口向上;②當點P在AB上運動時,設P點坐標為(x,y),則S=xy=k,為定值,故B、D選項錯誤;③當點P在BC上運動時,S隨t的增大而逐漸減小,故C選項錯誤.故選A.考點:1.反比例函數綜合題;2.動點問題的函數圖象.14、1【解析】解:原式==xy+2x+2y,方程組:,解得:,當x=3,y=﹣1時,原式=﹣3+6﹣2=1.故答案為1.點睛:此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關鍵.15、a(x-1)1.【解析】
先提取公因式a,再對余下的多項式利用完全平方公式繼續分解.【詳解】解:ax1-1ax+a,
=a(x1-1x+1),
=a(x-1)1.【點睛】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.16、.【解析】
當PC⊥AB時,線段PQ最短;連接CP、CQ,根據勾股定理知PQ2=CP2﹣CQ2,先求出CP的長,然后由勾股定理即可求得答案.【詳解】連接CP、CQ;如圖所示:∵PQ是⊙C的切線,∴CQ⊥PQ,∠CQP=90°,根據勾股定理得:PQ2=CP2﹣CQ2,∴當PC⊥AB時,線段PQ最短.∵在Rt△ACB中,∠A=30°,BC=2,∴AB=2BC=4,AC=2,∴CP===,∴PQ==,∴PQ的最小值是.故答案為:.【點睛】本題考查了切線的性質以及勾股定理的運用;注意掌握輔助線的作法,注意當PC⊥AB時,線段PQ最短是關鍵.三、解答題(共8題,共72分)17、或【解析】
把代入二元一次方程組得到關于a,b的方程組,經過整理,得到關于b的一元二次方程,解之即可得到b的值,把b的值代入一個關于a,b的二元一次方程,求出a的值,即可得到答案.【詳解】把代入二元一次方程組得:,
由①得:a=1+b,
把a=1+b代入②,整理得:
b2+b-2=0,
解得:b=-2或b=1,
把b=-2代入①得:a+2=1,
解得:a=-1,
把b=1代入①得:
a-1=1,
解得:a=2,
即或.【點睛】本題考查了二元一次方程組的解,正確掌握代入法是解題的關鍵.18、解:(1)見解析;(2)108°;(3)最喜歡方法④,約有189人.【解析】
(1)由題意可知:喜歡方法②的學生有60-6-18-27=9(人);(2)求方法③的圓心角應先求所占比值,再乘以360°;(3)根據條形的高低可判斷喜歡方法④的學生最多,人數應該等于總人數乘以喜歡方法④所占的比例;【詳解】(1)方法②人數為60?6?18?27=9(人);補條形圖如圖:(2)方法③的圓心角為故答案為108°(3)由圖可以看出喜歡方法④的學生最多,人數為(人);【點睛】考查扇形統計圖,條形統計圖,用樣本估計總體,比較基礎,難度不大,是中考常考題型.19、(1)200;(2)答案見解析;(3).【解析】
(1)由題意得:這次調查中,一共調查的學生數為:40÷20%=200(名);(2)根據題意可求得B占的百分比為:1-20%-30%-15%=35%,C的人數為:200×30%=60(名);則可補全統計圖;(3)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與一人是喜歡跳繩、一人是喜歡足球的學生的情況,再利用概率公式即可求得答案.【詳解】解:(1)根據題意得:這次調查中,一共調查的學生數為:40÷20%=200(名);故答案為:200;(2)C組人數:200-40-70-30=60(名)B組百分比:70÷200×100%=35%如圖(3)分別用A,B,C表示3名喜歡跳繩的學生,D表示1名喜歡足球的學生;
畫樹狀圖得:∵共有12種等可能的結果,一人是喜歡跳繩、一人是喜歡足球的學生的有6種情況,∴一人是喜歡跳繩、一人是喜歡足球的學生的概率為:.【點睛】此題考查了列表法或樹狀圖法求概率以及條形統計圖與扇形統計圖.用到的知識點為:概率=所求情況數與總情況數之比.20、(1)等腰三角形;線段的垂直平分線上的點到兩端的距離相等;(2)1;(3).【解析】試題分析:(1)根據線段的垂直平分線的性質即可判斷.(2)如圖②中,作AE⊥BC于E.根據已知得出AE=BE,再求出BD的長,即可求出DE的長.(3)如圖③中,作CH⊥AF于H,先證△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的長,然后證明△ADE∽△CHE,建立方程求出EH即可.解:(1)等腰三角形;線段的垂直平分線上的點到兩端的距離相等(2)解:如圖②中,作AE⊥BC于E.在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3,∴AE=BE=3,∵AD為BC邊中線,BC=8,∴BD=DC=1,∴DE=BD﹣BE=1﹣3=1,∴邊BC的中垂距為1(3)解:如圖③中,作CH⊥AF于H.∵四邊形ABCD是矩形,∴∠D=∠EHC=∠ECF=90°,AD∥BF,∵DE=EC,∠AED=∠CEF,∴△ADE≌△FCE,∴AE=EF,在Rt△ADE中,∵AD=1,DE=3,∴AE==5,∵∠D=EHC,∠AED=∠CEH,∴△ADE∽△CHE,∴=,∴=,∴EH=,∴△ACF中邊AF的中垂距為21、甲有錢,乙有錢.【解析】
設甲有錢x,乙有錢y,根據相等關系:甲的錢數+乙錢數的一半=50,甲的錢數的三分之二+乙的錢數=50列出二元一次方程組求解即可.【詳解】解:設甲有錢,乙有錢.由題意得:,解方程組得:,答:甲有錢,乙有錢.【點睛】本題考查了二元一次方程組的應用,讀懂題意正確的找出兩個相等關系是解決此題的關鍵.22、(1)150;45,36,(2)娛樂(3)1【解析】
(1)由“體育”的人數及其所占百分比可得總人數,用總人數減去其它節目的人數即可得求得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑自然采光模擬與優化-洞察闡釋
- 會員制水晶服務模式創新創業項目商業計劃書
- 緩控釋在藥物轉運中的研究-洞察闡釋
- 高中生物學問題情境設計與學科思維能力的關系
- 新疆政法學院《英語基礎口語一》2023-2024學年第二學期期末試卷
- 湖北師范大學文理學院《籃球1》2023-2024學年第二學期期末試卷
- 貴州文化旅游職業學院《分鏡實訓》2023-2024學年第二學期期末試卷
- 明日重點題目及答案
- 游子吟課件教學課件
- 長春科技學院《流體力學及設備》2023-2024學年第二學期期末試卷
- 2025年宜賓市英語七下期末復習檢測試題含答案
- 項目管理從立項到結項全解析
- 全國導游人員資格考試單科綜合測試卷(科目一:政策與法律法規)
- 2024年中國鐵路成都局集團有限公司招聘考試《鐵路基本常識》真題庫及答案
- 生態草場使用權轉讓協議
- 第18課清朝的邊疆治理教學設計-統編版七年級歷史下冊
- 物流實操試題及答案詳解
- 播出設備檢修管理制度
- 醫院醫保獎懲管理制度
- 2025年中級經濟師之中級經濟師金融專業題庫練習試卷A卷附答案
- Python數據科學與機器學習結合試題及答案
評論
0/150
提交評論