浙江省寧波江東區重點名校2023-2024學年中考數學模擬試題含解析_第1頁
浙江省寧波江東區重點名校2023-2024學年中考數學模擬試題含解析_第2頁
浙江省寧波江東區重點名校2023-2024學年中考數學模擬試題含解析_第3頁
浙江省寧波江東區重點名校2023-2024學年中考數學模擬試題含解析_第4頁
浙江省寧波江東區重點名校2023-2024學年中考數學模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省寧波江東區重點名校2023-2024學年中考數學模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(共10小題,每小題3分,共30分)1.二次函數的圖象如圖所示,則反比例函數與一次函數在同一坐標系中的大致圖象是()A. B. C. D.2.下列幾何體中,俯視圖為三角形的是()A. B. C. D.3.對于數據:6,3,4,7,6,0,1.下列判斷中正確的是()A.這組數據的平均數是6,中位數是6 B.這組數據的平均數是6,中位數是7C.這組數據的平均數是5,中位數是6 D.這組數據的平均數是5,中位數是74.如圖,數軸A、B上兩點分別對應實數a、b,則下列結論正確的是()A.a+b>0 B.ab>0 C.1a+5.將1、、、按如圖方式排列,若規定(m、n)表示第m排從左向右第n個數,則(6,5)與(13,6)表示的兩數之積是()A. B.6 C. D.6.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分別為AB,AC,AD的中點,若BC=2,則EF的長度為()A.12B.1C.327.《九章算術》是中國古代第一部數學專著,它對我國古代后世的數學家產生了深遠的影響,該書中記載了一個問題,大意是:有幾個人一起去買一件物品,每人出8元,多3元;每人出7元,少4元,問有多少人?該物品價幾何?設有x人,物品價值y元,則所列方程組正確的是()A. B.C. D.8.點A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數y=的圖象上,若x1<x2<0<x3,則y1,y2,y3的大小關系是()A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y39.由若干個相同的小立方體搭成的幾何體的三視圖如圖所示,則搭成這個幾何體的小立方體的個數是()A.3 B.4 C.5 D.610.如圖,A、B、C是⊙O上的三點,∠B=75°,則∠AOC的度數是()A.150° B.140° C.130° D.120°二、填空題(本大題共6個小題,每小題3分,共18分)11.若分式a2-9a+312.如圖(a),有一張矩形紙片ABCD,其中AD=6cm,以AD為直徑的半圓,正好與對邊BC相切,將矩形紙片ABCD沿DE折疊,使點A落在BC上,如圖(b).則半圓還露在外面的部分(陰影部分)的面積為_______.13.在□ABCD中,按以下步驟作圖:①以點B為圓心,以BA長為半徑作弧,交BC于點E;②分別以A,E為圓心,大于AE的長為半徑作弧,兩弧交于點F;③連接BF,延長線交AD于點G.若∠AGB=30°,則∠C=_______°.14.已知a+b=1,那么a2-b2+2b=________.15.某自然保護區為估計該地區一種珍稀鳥類的數量,先捕捉了20只,給它們做上標記后放回,過一段時間待它們完全混合于同類后又捕捉了20只,發現其中有4只帶有標記,從而估計該地區此種鳥類的數量大約有______只16.如圖,校園內有一棵與地面垂直的樹,數學興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_____________米(結果保留根號).三、解答題(共8題,共72分)17.(8分)某企業為杭州計算機產業基地提供電腦配件.受美元走低的影響,從去年1至9月,該配件的原材料價格一路攀升,每件配件的原材料價格y1(元)與月份x(1≤x≤9,且x取整數)之間的函數關系如下表:月份x123456789價格y1(元/件)560580600620640660680700720隨著國家調控措施的出臺,原材料價格的漲勢趨緩,10至12月每件配件的原材料價格y2(元)與月份x(10≤x≤12,且x取整數)之間存在如圖所示的變化趨勢:(1)請觀察題中的表格,用所學過的一次函數、反比例函數或二次函數的有關知識,直接寫出y1與x之間的函數關系式,根據如圖所示的變化趨勢,直接寫出y2與x之間滿足的一次函數關系式;(2)若去年該配件每件的售價為1000元,生產每件配件的人力成本為50元,其它成本30元,該配件在1至9月的銷售量p1(萬件)與月份x滿足關系式p1=0.1x+1.1(1≤x≤9,且x取整數),10至12月的銷售量p2(萬件)p2=﹣0.1x+2.9(10≤x≤12,且x取整數).求去年哪個月銷售該配件的利潤最大,并求出這個最大利潤.18.(8分)如圖1,在直角梯形ABCD中,動點P從B點出發,沿B→C→D→A勻速運動,設點P運動的路程為x,△ABP的面積為y,圖象如圖2所示.(1)在這個變化中,自變量、因變量分別是、;(2)當點P運動的路程x=4時,△ABP的面積為y=;(3)求AB的長和梯形ABCD的面積.19.(8分)如圖,四邊形ABCD中,AC平分∠DAB,AC2=AB?AD,∠ADC=90°,E為AB的中點.(1)求證:△ADC∽△ACB;(2)CE與AD有怎樣的位置關系?試說明理由;(3)若AD=4,AB=6,求的值.20.(8分)已知關于x的一元二次方程x2﹣6x+(2m+1)=0有實數根.求m的取值范圍;如果方程的兩個實數根為x1,x2,且2x1x2+x1+x2≥20,求m的取值范圍.21.(8分)如圖所示,AB是⊙O的一條弦,DB切⊙O于點B,過點D作DC⊥OA于點C,DC與AB相交于點E.(1)求證:DB=DE;(2)若∠BDE=70°,求∠AOB的大小.22.(10分)為了解中學生“平均每天體育鍛煉時間”的情況,某地區教育部門隨機調查了若干名中學生,根據調查結果制作統計圖①和圖②,請根據相關信息,解答下列問題:(1)本次接受隨機抽樣調查的中學生人數為_______,圖①中m的值是_____;(2)求本次調查獲取的樣本數據的平均數、眾數和中位數;(3)根據統計數據,估計該地區250000名中學生中,每天在校體育鍛煉時間大于等于1.5h的人數.23.(12分)如圖,已知:△ABC中,AB=AC,M是BC的中點,D、E分別是AB、AC邊上的點,且BD=CE.求證:MD=ME.24.某商城銷售A,B兩種自行車型自行車售價為2

100元輛,B型自行車售價為1

750元輛,每輛A型自行車的進價比每輛B型自行車的進價多400元,商城用80

000元購進A型自行車的數量與用64

000元購進B型自行車的數量相等.求每輛A,B兩種自行車的進價分別是多少?現在商城準備一次購進這兩種自行車共100輛,設購進A型自行車m輛,這100輛自行車的銷售總利潤為y元,要求購進B型自行車數量不超過A型自行車數量的2倍,總利潤不低于13

000元,求獲利最大的方案以及最大利潤.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據拋物線和直線的關系分析.【詳解】由拋物線圖像可知,所以反比例函數應在二、四象限,一次函數過原點,應在二、四象限.故選D【點睛】考核知識點:反比例函數圖象.2、C【解析】

俯視圖是從上面所看到的圖形,可根據各幾何體的特點進行判斷.【詳解】A.圓錐的俯視圖是圓,中間有一點,故本選項不符合題意,B.幾何體的俯視圖是長方形,故本選項不符合題意,C.三棱柱的俯視圖是三角形,故本選項符合題意,D.圓臺的俯視圖是圓環,故本選項不符合題意,故選C.【點睛】此題主要考查了由幾何體判斷三視圖,正確把握觀察角度是解題關鍵.3、C【解析】

根據題目中的數據可以按照從小到大的順序排列,從而可以求得這組數據的平均數和中位數.【詳解】對于數據:6,3,4,7,6,0,1,這組數據按照從小到大排列是:0,3,4,6,6,7,1,這組數據的平均數是:中位數是6,故選C.【點睛】本題考查了平均數、中位數的求法,解決本題的關鍵是明確它們的意義才會計算,求平均數是用一組數據的和除以這組數據的個數;中位數的求法分兩種情況:把一組數據從小到大排成一列,正中間如果是一個數,這個數就是中位數,如果正中間是兩個數,那中位數是這兩個數的平均數.4、C【解析】

本題要先觀察a,b在數軸上的位置,得b<-1<0<a<1,然后對四個選項逐一分析.【詳解】A、因為b<-1<0<a<1,所以|b|>|a|,所以a+b<0,故選項A錯誤;B、因為b<0<a,所以ab<0,故選項B錯誤;C、因為b<-1<0<a<1,所以1a+1D、因為b<-1<0<a<1,所以1a-1故選C.【點睛】本題考查了實數與數軸的對應關系,數軸上右邊的數總是大于左邊的數.5、B【解析】

根據數的排列方法可知,第一排:1個數,第二排2個數.第三排3個數,第四排4個數,…第m-1排有(m-1)個數,從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個數,根據數的排列方法,每四個數一個輪回,根據題目意思找出第m排第n個數到底是哪個數后再計算.【詳解】第一排1個數,第二排2個數.第三排3個數,第四排4個數,…第m-1排有(m-1)個數,從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個數,根據數的排列方法,每四個數一個輪回,由此可知:(1,5)表示第1排從左向右第5個數是,(13,1)表示第13排從左向右第1個數,可以看出奇數排最中間的一個數都是1,第13排是奇數排,最中間的也就是這排的第7個數是1,那么第1個就是,則(1,5)與(13,1)表示的兩數之積是1.故選B.6、B【解析】

根據題意求出AB的值,由D是AB中點求出CD的值,再由題意可得出EF是△ACD的中位線即可求出.【詳解】∵∠ACB=90°,∠A=30°,∴BC=12∵BC=2,∴AB=2BC=2×2=4,∵D是AB的中點,∴CD=12AB=12∵E,F分別為AC,AD的中點,∴EF是△ACD的中位線.∴EF=12CD=12故答案選B.【點睛】本題考查的知識點是三角形中位線定理,解題的關鍵是熟練的掌握三角形中位線定理.7、C【解析】根據題意相等關系:①8×人數-3=物品價值,②7×人數+4=物品價值,可列方程組:,故選C.點睛:本題考查了二元一次方程組的應用,解答本題的關鍵是讀懂題意,設出未知數,找出合適的等量關系.8、D【解析】

先根據反比例函數的解析式判斷出函數圖象所在的象限,再根據x1<x2<0<x1,判斷出三點所在的象限,再根據函數的增減性即可得出結論.【詳解】∵反比例函數y=中,k=1>0,∴此函數圖象的兩個分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,點C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y隨x的增大而減小,∴y1>y2,∴y2<y1<y1.故選D.【點睛】本題考查的是反比例函數圖象上點的坐標特點,先根據題意判斷出函數圖象所在的象限及三點所在的象限是解答此題的關鍵.9、B【解析】分析:從俯視圖中可以看出最底層小正方體的個數及形狀,從主視圖可以看出每一層小正方體的層數和個數,從而算出總的個數.解答:解:從主視圖看第一列兩個正方體,說明俯視圖中的左邊一列有兩個正方體,主視圖右邊的一列只有一行,說明俯視圖中的右邊一行只有一列,所以此幾何體共有四個正方體.故選B.10、A【解析】

直接根據圓周角定理即可得出結論.【詳解】∵A、B、C是⊙O上的三點,∠B=75°,∴∠AOC=2∠B=150°.故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】試題分析:根據分式的值為0的條件列出關于a的不等式組,求出a的值即可.試題解析:∵分式a2∴a2解得a=1.考點:分式的值為零的條件.12、【解析】

解:如圖,作OH⊥DK于H,連接OK,∵以AD為直徑的半圓,正好與對邊BC相切,∴AD=2CD.∴根據折疊對稱的性質,A'D=2CD.∵∠C=90°,∴∠DA'C=30°.∴∠ODH=30°.∴∠DOH=60°.∴∠DOK=120°.∴扇形ODK的面積為.∵∠ODH=∠OKH=30°,OD=3cm,∴.∴.∴△ODK的面積為.∴半圓還露在外面的部分(陰影部分)的面積是:.故答案為:.13、120【解析】

首先證明∠ABG=∠GBE=∠AGB=30°,可得∠ABC=60°,再利用平行四邊形的鄰角互補即可解決問題.【詳解】由題意得:∠GBA=∠GBE,∵AD∥BC,∴∠AGB=∠GBE=30°,∴∠ABC=60°,∵AB∥CD,∴∠C=180°-∠ABC=120°,故答案為:120.【點睛】本題考查基本作圖、平行四邊形的性質等知識,解題的關鍵是熟練掌握基本知識14、1【解析】

解:∵a+b=1,∴原式=故答案為1.【點睛】本題考查的是平方差公式的靈活運用.15、1【解析】

求出樣本中有標記的所占的百分比,再用樣本容量除以百分比即可解答.【詳解】解:

只.

故答案為:1.【點睛】本題考查的是通過樣本去估計總體,總體百分比約等于樣本百分比.16、【解析】設出樹高,利用所給角的正切值分別表示出兩次影子的長,然后作差建立方程即可.解:如圖所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵兩次測量的影長相差8米,∴=8,∴x=4,故答案為4.“點睛”本題考查了平行投影的應用,太陽光線下物體影子的長短不僅與物體有關,而且與時間有關,不同時間隨著光線方向的變化,影子的方向也在變化,解此類題,一定要看清方向.解題關鍵是根據三角函數的幾何意義得出各線段的比例關系,從而得出答案.三、解答題(共8題,共72分)17、(1)y1=20x+540,y2=10x+1;(2)去年4月銷售該配件的利潤最大,最大利潤為450萬元.【解析】

(1)利用待定系數法,結合圖象上點的坐標求出一次函數解析式即可;(2)根據生產每件配件的人力成本為50元,其它成本30元,以及售價銷量進而求出最大利潤.【詳解】(1)利用表格得出函數關系是一次函數關系:設y1=kx+b,∴解得:∴y1=20x+540,利用圖象得出函數關系是一次函數關系:設y2=ax+c,∴解得:∴y2=10x+1.(2)去年1至9月時,銷售該配件的利潤w=p1(1000﹣50﹣30﹣y1),=(0.1x+1.1)(1000﹣50﹣30﹣20x﹣540)=﹣2x2+16x+418,=﹣2(x﹣4)2+450,(1≤x≤9,且x取整數)∵﹣2<0,1≤x≤9,∴當x=4時,w最大=450(萬元);去年10至12月時,銷售該配件的利潤w=p2(1000﹣50﹣30﹣y2)=(﹣0.1x+2.9)(1000﹣50﹣30﹣10x﹣1),=(x﹣29)2,(10≤x≤12,且x取整數),∵10≤x≤12時,∴當x=10時,w最大=361(萬元),∵450>361,∴去年4月銷售該配件的利潤最大,最大利潤為450萬元.【點睛】此題主要考查了一次函數的應用,根據已知得出函數關系式以及利用函數增減性得出函數最值是解題關鍵.18、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面積=1.【解析】

(1)依據點P運動的路程為x,△ABP的面積為y,即可得到自變量和因變量;(2)依據函數圖象,即可得到點P運動的路程x=4時,△ABP的面積;(3)根據圖象得出BC的長,以及此時三角形ABP面積,利用三角形面積公式求出AB的長即可;由函數圖象得出DC的長,利用梯形面積公式求出梯形ABCD面積即可.【詳解】(1)∵點P運動的路程為x,△ABP的面積為y,∴自變量為x,因變量為y.故答案為x,y;(2)由圖可得:當點P運動的路程x=4時,△ABP的面積為y=2.故答案為2;(3)根據圖象得:BC=4,此時△ABP為2,∴AB?BC=2,即×AB×4=2,解得:AB=8;由圖象得:DC=9﹣4=5,則S梯形ABCD=×BC×(DC+AB)=×4×(5+8)=1.【點睛】本題考查了動點問題的函數圖象,弄清函數圖象上的信息是解答本題的關鍵.19、(1)證明見解析;(2)CE∥AD,理由見解析;(3).【解析】

(1)根據角平分線的定義得到∠DAC=∠CAB,根據相似三角形的判定定理證明;(2)根據相似三角形的性質得到∠ACB=∠ADC=90°,根據直角三角形的性質得到CE=AE,根據等腰三角形的性質、平行線的判定定理證明;(3)根據相似三角形的性質列出比例式,計算即可.【詳解】解:(1)∵AC平分∠DAB,∴∠DAC=∠CAB,又∵AC2=AB?AD,∴AD:AC=AC:AB,∴△ADC∽△ACB;(2)CE∥AD,理由:∵△ADC∽△ACB,∴∠ACB=∠ADC=90°,又∵E為AB的中點,∴∠EAC=∠ECA,∵∠DAC=∠CAE,∴∠DAC=∠ECA,∴CE∥AD;(3)∵AD=4,AB=6,CE=AB=AE=3,∵CE∥AD,∴∠FCE=∠DAC,∠CEF=∠ADF,∴△CEF∽△ADF,∴==,∴=.20、(1)m≤1;(2)3≤m≤1.【解析】試題分析:(1)根據判別式的意義得到△=(-6)2-1(2m+1)≥0,然后解不等式即可;(2)根據根與系數的關系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的結論可確定滿足條件的m的取值范圍.試題解析:(1)根據題意得△=(-6)2-1(2m+1)≥0,解得m≤1;(2)根據題意得x1+x2=6,x1x2=2m+1,而2x1x2+x1+x2≥20,所以2(2m+1)+6≥20,解得m≥3,而m≤1,所以m的范圍為3≤m≤1.21、(1)證明見解析;(2)110°.【解析】分析:(1)欲證明DB=DE,只要證明∠BED=∠ABD即可;(2)因為△OAB是等腰三角形,屬于只要求出∠OBA即可解決問題;詳解:(1)證明:∵DC⊥OA,∴∠OAB+∠CEA=90°,∵BD為切線,∴OB⊥BD,∴∠OBA+∠ABD=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠CEA=∠ABD,∵∠CEA=∠BED,∴∠BED=∠ABD,∴DE=DB.(2)∵DE=DB,∠BDE=70°,∴∠BED=∠ABD=55°,∵BD為切線,∴OB⊥BD,∴∠OBA=35°,∵OA=OB,∴∠OBA=180°-2×35°=110°.點睛:本題考查圓周角定理、切線的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.22、(1)250、12;(2)平均數:1.38h;眾數:1.5h;中位數:1.5h;(3)160000人;【解析】

(1)根據題意,本次接受調查的學生總人數為各個金額人數之和,用總概率減去其他金額的概率即可求得m值.(2)平均數為一組數據中所有數據之和再除以這組數據的個數;眾數是在一組數據中出現次數最多的數;中位數是將一組數據按大小順序排列,處于最中間位置的一個數據,或是最中間兩個數據的平均數,據此求解即可.(3)根據樣本估計總體,用“每天在校體育鍛煉時間大于等于1.5h的人數”的概率乘以全校總人數求解即可.【詳解】(1)本次接受隨機抽樣調查的中學生人數為60÷24%=250人,m=100﹣(24+48+8+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論