




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.下列事件中,必然事件是()A.拋一枚硬幣,正面朝上B.打開電視頻道,正在播放《今日視線》C.射擊運動員射擊一次,命中10環D.地球繞著太陽轉2.二次函數的圖象如圖所示,下列結論:;;;;,其中正確結論的是A. B. C. D.3.把二次函數化為的形式是A. B.C. D.4.在一個不透明的盒子中有20個除顏色外均相同的小球,每次摸球前先將盒中的球搖勻,隨機摸出一個球記下顏色后再放回盒中,通過大量重復摸球試驗后,發現摸到紅球的頻率穩定于0.3,由此可估計盒中紅球的個數約為()A.3 B.6 C.7 D.145.下列事件是必然事件的是()A.打開電視播放建國70周年國慶閱兵式B.任意翻開初中數學書一頁,內容是實數練習C.去領獎的三位同學中,其中有兩位性別相同D.食用保健品后長生不老6.如圖,在平面直角坐標中,正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,點A,B,E在x軸上,若正方形BEFG的邊長為12,則C點坐標為()A.(6,4) B.(6,2) C.(4,4) D.(8,4)7.二次函數y=(x﹣1)2+2,它的圖象頂點坐標是()A.(﹣2,1) B.(2,1) C.(2,﹣1) D.(1,2)8.已知,下列說法中,不正確的是()A. B.與方向相同C. D.9.如圖,△ABC是⊙O的內接三角形,∠AOB=110°,則∠ACB的度數為()A.35° B.55° C.60° D.70°10.(湖南省婁底市九年級中考一模數學試卷)將數字“6”旋轉180°,得到數字“9”,將數字“9”旋轉180°,得到數字“6”,現將數字“69”旋轉180°,得到的數字是()A.96B.69C.66D.9911.如圖是二次函數y=ax2+bx+c的圖象,其對稱軸為x=1,下列結論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是拋物線上兩點,則y1<y2A.①② B.②③ C.②④ D.①③④12.設a,b是方程x2+2x﹣20=0的兩個實數根,則a2+3a+b的值為()A.﹣18 B.21 C.﹣20 D.18二、填空題(每題4分,共24分)13.□ABCD的兩條對角線AC、BD相交于O,現從下列條件:①AC⊥BD②AB=BC③AC=BD④∠ABD=∠CBD中隨機取一個作為條件,可推出□ABCD是菱形的概率是_________14.如圖,E,F分別為矩形ABCD的邊AD,BC的中點,且矩形ABCD與矩形EABF相似,AB=1,則BC的長為_____.15.如圖,在平面直角坐標系中,,則經過三點的圓弧所在圓的圓心的坐標為__________;點坐標為,連接,直線與的位置關系是___________.16.計算:cos45°=________________17.如果∠A是銳角,且sinA=,那么∠A=________゜.18.如圖,△ABC是等腰直角三角形,BC是斜邊,將△ABP繞點A逆時針旋轉后,能與△ACP′重合,如果AP=3,那么PP′=______.三、解答題(共78分)19.(8分)先化簡,再求值:已知,,求的值.20.(8分)如圖,在中,點、、分別在邊、、上,,,.(1)當時,求的長;(2)設,,那么__________,__________(用向量,表示)21.(8分)如圖,在△ABC中,D為BC邊上的一點,且∠CAD=∠B,CD=4,BD=2,求AC的長22.(10分)把一根長為米的鐵絲折成一個矩形,矩形的一邊長為米,面積為S米,(1)求S關于的函數表達式和的取值范圍(2)為何值時,S最大?最大為多少?23.(10分)拋物線的圖像與軸的一個交點為,另一交點為,與軸交于點,對稱軸是直線.(1)求該二次函數的表達式及頂點坐標;(2)畫出此二次函數的大致圖象;利用圖象回答:當取何值時,?(3)若點在拋物線的圖像上,且點到軸距離小于3,則的取值范圍為;24.(10分)甲乙兩名同學做摸球游戲,他們把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中.(1)求從袋中隨機摸出一球,標號是1的概率;(2)從袋中隨機摸出一球后放回,搖勻后再隨機摸出一球,若兩次摸出的球的標號之和為偶數時,則甲勝;若兩次摸出的球的標號之和為奇數時,則乙勝;試分析這個游戲是否公平?請說明理由.25.(12分)如圖,是的直徑,且,點為外一點,且,分別切于點、兩點.與的延長線交于點.(1)求證:;(2)填空:①當__________時,四邊形是正方形.②當____________時,為等邊三角形.26.計算:2cos60°+4sin60°?tan30°﹣cos45°
參考答案一、選擇題(每題4分,共48分)1、D【分析】根據事件發生的可能性大小及必然事件的定義即可作出判斷.【詳解】解:A、拋一枚硬幣,正面朝上是隨機事件;B、打開電視頻道,正在播放《今日視線》是隨機事件;C、射擊運動員射擊一次,命中10環是隨機事件;D、地球繞著太陽轉是必然事件;故選:D.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定會發生的事件.不可能事件是指在一定條件下,一定不會發生的事件,不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.2、C【分析】利用圖象信息以及二次函數的性質一一判斷即可;【詳解】解:∵拋物線開口向下,∴a<0,∵對稱軸x=﹣1=,∴b<0,∵拋物線交y軸于正半軸,∴c>0,∴abc>0,故①正確,∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,故②錯誤,∵x=﹣2時,y>0,∴4a﹣2b+c>0,∴4a+c>2b,故③正確,∵x=﹣1時,y>0,x=1時,y<0,∴a﹣b+c>0,a+b+c<0,∴(a﹣b+c)(a+b+c)<0∴,∴,故④錯誤,∵x=﹣1時,y取得最大值a﹣b+c,∴ax2+bx+c≤a﹣b+c,∴x(ax+b)≤a﹣b,故⑤正確.故選C.【點睛】本題考查二次函數的圖象與系數的關系等知識,解題的關鍵是讀懂圖象信息,靈活運用所學知識解決問題,屬于中考常考題型.3、B【分析】利用配方法先提出二次項系數,在加上一次項系數的一半的平方來湊完全平方式,把一般式轉化為頂點式.【詳解】原式=(x2+4x?4)=(x2+4x+4?8)=(x+2)2?2故選:B.【點睛】此題考查了二次函數一般式與頂點式的轉換,解答此類問題時只要把函數式直接配方即可求解.4、B【分析】在同樣條件下,大量反復試驗時,隨機事件發生的頻率逐漸穩定在概率附近,可以從比例關系入手,【詳解】解:根據題意列出方程,解得:x=6,故選B.考點:利用頻率估計概率.5、C【分析】根據必然事件指在一定條件下,一定發生的事件;不可能事件是指在一定條件下,一定不發生的事件;不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件,對每一項進行分析即可.【詳解】A.打開電視播放建國70周年國慶閱兵式是隨機事件,故不符合題意;B.任意翻開初中數學書一頁,內容是實數練習是隨機事件,故不符合題意;C.去領獎的三位同學中,其中有兩位性別相同是必然事件,符合題意;D.食用保健品后長生不老是不可能事件,故不符合題意;故選C.【點睛】本題考查的是事件的分類,事件分為確定事件和不確定事件(隨機事件),確定事件又分為必然事件和不可能事件.6、A【分析】直接利用位似圖形的性質結合相似比得出AD的長,進而得出△OAD∽△OBG,進而得出AO的長,即可得出答案.【詳解】∵正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,∴,∵BG=12,∴AD=BC=4,∵AD∥BG,∴△OAD∽△OBG,∴∴解得:OA=2,∴OB=6,∴C點坐標為:(6,4),故選A.【點睛】此題主要考查了位似變換以及相似三角形的判定與性質,正確得出AO的長是解題關鍵.7、D【解析】二次函數的頂點式是,,其中是這個二次函數的頂點坐標,根據頂點式可直接寫出頂點坐標.【詳解】解:故選:D.【點睛】根據拋物線的頂點式,可確定拋物線的開口方向,頂點坐標(對稱軸),最大(最小)值,增減性等.8、A【分析】根據平行向量以及模的定義的知識求解即可求得答案,注意掌握排除法在選擇題中的應用.【詳解】A、,故該選項說法錯誤B、因為,所以與的方向相同,故該選項說法正確,C、因為,所以,故該選項說法正確,D、因為,所以;故該選項說法正確,故選:A.【點睛】本題考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共線向量,是指方向相同或相反的非零向量.零向量和任何向量平行.9、B【分析】直接根據圓周角定理進行解答即可.【詳解】解:∵∠AOB與∠ACB是同弧所對的圓心角與圓周角,∠AOB=110°,∴∠ACB=∠AOB=55°.故選:B.【點睛】本題考查了三角形的外接圓與外心,圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.10、B【解析】現將數字“69”旋轉180°,得到的數字是:69,故選B.11、C【解析】試題分析:根據題意可得:a<0,b>0,c>0,則abc<0,則①錯誤;根據對稱軸為x=1可得:-b2a=1,則-b=2a,即2a+b=0,則②正確;根據函數的軸對稱可得:當x=2時,y>0,即4a+2b+c>0,則③錯誤;對于開口向下的函數,離對稱軸越近則函數值越大,則點睛:本題主要考查的就是二次函數的性質,屬于中等題.如果開口向上,則a>0,如果開口向下,則a<0;如果對稱軸在y軸左邊,則b的符號與a相同,如果對稱軸在y軸右邊,則b的符號與a相反;如果題目中出現2a+b和2a-b的時候,我們要看對稱軸與1或者-1的大小關系再進行判定;如果出現a+b+c,則看x=1時y的值;如果出現a-b+c,則看x=-1時y的值;如果出現4a+2b+c,則看x=2時y的值,以此類推;對于開口向上的函數,離對稱軸越遠則函數值越大,對于開口向下的函數,離對稱軸越近則函數值越大.12、D【分析】根據根與系數的關系看得a+b=﹣2,由a,b是方程x2+2x﹣20=0的兩個實數根看得a2+2a=20,進而可以得解.【詳解】解:∵a,b是方程x2+2x﹣20=0的兩個實數根,∴a2+2a=20,a+b=﹣2,∴a2+3a+b=a2+2a+a+b=20﹣2=1則a2+3a+b的值為1.故選:D.【點睛】本題主要考查的是一元二次方程中根與系數的關系,掌握一元二次方程的根與系數的關系式解此題的關鍵.二、填空題(每題4分,共24分)13、【分析】根據菱形的判定方法直接就可得出推出菱形的概率.【詳解】根據“對角線互相垂直的平行四邊形是菱形”直接判斷①符合題意;根據“一組鄰邊相等的平行四邊形是菱形”可直接判斷②符合題意;根據“對角線相等的平行四邊形是矩形”,所以③不符合菱形的判定方法;,,BC=CD,是菱形,故④符合題意;推出菱形的概率為:.故答案為.【點睛】本題主要考查菱形的判定及概率,熟記菱形的判定方法是解題的關鍵,然后根據概率的求法直接得出答案.14、【分析】根據相似多邊形的性質列出比例式,計算即可.【詳解】∵矩形ABCD與矩形EABF相似,∴=,即=,解得,AD=,∴矩形ABCD的面積=AB?AD=,故答案為:.【點睛】本題考查了相似多邊形的性質,掌握相似多邊形的對應邊的比相等是解題的關鍵.15、(2,0)相切【分析】由網格容易得出AB的垂直平分線和BC的垂直平分線,它們的交點即為點M,根據圖形即可得出點M的坐標;由于C在⊙M上,如果CD與⊙M相切,那么C點必為切點;因此可連接MC,證MC是否與CD垂直即可.可根據C、M、D三點坐標,分別表示出△CMD三邊的長,然后用勾股定理來判斷∠MCD是否為直角.【詳解】解:如圖,作線段AB,CD的垂直平分線交點即為M,由圖可知經過A、B、C三點的圓弧所在圓的圓心M的坐標為(2,0).
連接MC,MD,
∵MC2=42+22=20,CD2=42+22=20,MD2=62+22=40,∴MD2=MC2+CD2,∴∠MCD=90°,
又∵MC為半徑,
∴直線CD是⊙M的切線.故答案為:(2,0);相切.【點睛】本題考查的直線與圓的位置關系,圓的切線的判定等知識,在網格和坐標系中巧妙地與圓的幾何證明有機結合,較新穎.16、1【分析】將cos45°=代入進行計算即可.【詳解】解:cos45°=故答案為:1.【點睛】此題考查的是特殊角的銳角三角函數值,掌握cos45°=是解決此題的關鍵.17、1【分析】直接利用特殊角的三角函數值得出答案.【詳解】解:∵∠A是銳角,且sinA=,∴∠A=1°.故答案為1.考點:特殊角的三角函數值.18、3【分析】根據旋轉的性質,可得∠BAC=∠PAP′=90°,AP=AP′,故△APP′是等腰直角三角形,由勾股定理得PP′的大小.【詳解】解:根據旋轉的性質,可得∠BAC=∠PAP′=90°,AP=AP′,∴△APP′是等腰直角三角形,由勾股定理得PP′=.故答案為.【點睛】本題考查了圖形的旋轉變化,旋轉得到的圖形與原圖形全等,解答時要分清旋轉角和對應線段.三、解答題(共78分)19、,原式.【分析】先根據分式的運算法則把所給代數式化簡,然后把,代入化簡的結果計算即可.【詳解】原式,當,時,原式.【點睛】本題考查了分式的混合運算:分式的混合運算,要注意運算順序,式與數有相同的混合運算順序;先乘方,再乘除,然后加減,有括號的先算括號里面的;最后結果分子、分母要進行約分,注意運算的結果要化成最簡分式或整式.20、(1);(2),【分析】(1)利用平行線分線段成比例定理求解即可.
(2)利用三角形法則求解即可.【詳解】(1)∵DE∥BC,EF∥AB,
∴四邊形DEFB是平行四邊形,
∴DE=BF=5,
∵AD:AB=DE:BC=1:3,
∴BC=15,
∴CF=BC-BF=15-5=1.
(2)∵AD:AB=1:3,
∴,
∵EF=BD,EF∥BD,
∴,
∵CF=2DE,
∴,
∴.【點睛】此題考查平面向量,平行向量等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.21、【分析】根據相似三角形的判定定理可得△CAD∽△CBA,列出比例式即可求出AC.【詳解】解:∵CD=4,BD=2,∴BC=CD+BD=6∵∠CAD=∠B,∠C=∠C∴△CAD∽△CBA∴∴解得:或(舍去)即.【點睛】此題考查的是相似三角形的判定及性質,掌握有兩組對應角相等的兩個三角形相似和相似三角形的對應邊成比例是解決此題的關鍵.22、(1)S=-+2x(0<x<2);(2)x=1時,面積最大,最大為1米2【分析】(1)根據矩形周長為米,一邊長為x,得出另一邊為2-x,再根據矩形的面積公式即可得出答案;(2)根據(1)得出的關系式,利用配方法進行整理,可求出函數的最大值,從而得出答案.【詳解】解:(1)∵矩形的一邊長為x米,∴另一邊長為2-x米,∴S=x(2-x)=-x2+2x(0<x<2),即S=-x2+2x(0<x<2);(2)根據(1)得:S=-x2+2x=-(x-1)2+1,∴矩形一邊長為1米時,面積最大為1米2,【點睛】本題考查的是二次函數的實際應用以及矩形面積的計算公式,關鍵是根據矩形的面積公式構建二次函數解決最值問題.23、(1),;(2)見解析,或;(3)【分析】(1)根據圖像對稱軸是直線,得到,再將,代入解析式,得到關于a、b、c的方程組,即可求得系數,得到解析式,再求出頂點坐標即可;(2)根據特定點畫出二次函數的大致圖象,根據二次函數與不等式的關系,即可得到對應的x的取值范圍.(3)求出當時,當時,y的值,即可求出的取值范圍.【詳解】(1)因為圖像對稱軸是直線,所以,將,代入解析式,得:由題知,解得,所以解析式為:;當時,,所以頂點坐標.(2)二次函數的大致圖象:當或,.(3)當時,得,當時,得,所以y取值范圍為,即的取值范圍為.【點睛】本題考查了待定系數法的求解析式、二元一次方程與不等式的關系,本題難度不大,是二次函數中經常考查的類型.24、(1);
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設備沉降觀測管理制度
- 設備設施檢查管理制度
- 設計公司人事管理制度
- 設計服飾搭配管理制度
- 評估公司人事管理制度
- 診所抓藥日常管理制度
- 診所行風建設管理制度
- 試驗設施器材管理制度
- 財務部精細化管理制度
- 財政直達資金管理制度
- 2024網站滲透測試報告
- 2024年中國建筑西南勘察設計研究院有限公司招聘筆試參考題庫含答案解析
- DG-TJ08-2433A-2023 外墻保溫一體化系統應用技術標準(預制混凝土反打保溫外墻)
- 教師法制教育培訓課件
- 眾包物流模式下的資源整合與分配
- 鐵路貨運流程課件
- 四川省成都市成華區2023-2024學年七年級上學期期末數學試題(含答案)
- 慢性硬膜下血腫護理要點大揭秘
- 管工基礎知識培訓課件
- 成人氣管切開拔管中國專家共識解讀
- “微”力量微博營銷
評論
0/150
提交評論