




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.如圖,為的直徑,弦于點,,,則的半徑為()A.5 B.8 C.3 D.102.下列圖形都是由同樣大小的五角星按一定的規律組成,其中第①個圖形一共有2個五角星,第②個圖形一共有8個五角星,第③個圖形一共有18個五角星,…,則第⑦個圖形中五角星的個數為()A.90 B.94 C.98 D.1023.下列四個圖形是中心對稱圖形().A. B. C. D.4.下列命題①若,則②相等的圓心角所對的弧相等③各邊都相等的多邊形是正多邊形④的平方根是.其中真命題的個數是()A.0 B.1 C.2 D.35.二次三項式配方的結果是()A. B.C. D.6.拋物線y=x2+bx+c(其中b,c是常數)過點A(2,6),且拋物線的對稱軸與線段y=0(1≤x≤3)有交點,則c的值不可能是()A.4 B.6 C.8 D.107.若函數y=的圖象在第一、三象限內,則m的取值范圍是()A.m>﹣3 B.m<﹣3 C.m>3 D.m<38.如圖,是正內一點,若將繞點旋轉到,則的度數為()A. B.C. D.9.二次函數的圖象如圖,則一次函數的圖象經過()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限10.下列標志既是軸對稱圖形又是中心對稱圖形的是().A. B.C. D.11.如圖,△ABC內接于⊙O,若∠A=α,則∠OBC等于()A.180°﹣2α B.2α C.90°+α D.90°﹣α12.如圖,如果從半徑為9cm的圓形紙片剪去圓周的一個扇形,將留下的扇形圍成一個圓錐(接縫處不重疊),那么這個圓錐的高為A.6cm B.cm C.8cm D.cm二、填空題(每題4分,共24分)13.如圖,線段AB=2,分別以A、B為圓心,以AB的長為半徑作弧,兩弧交于C、D兩點,則陰影部分的面積為.14.如圖,若點A的坐標為(1,),則∠1的度數為_____.15.在△ABC中,∠C=90°,若AC=6,BC=8,則△ABC外接圓半徑為________;16.拋物線y=3(x+2)2+5的頂點坐標是_____.17.如圖,在平面直角坐標系中,點A在拋物線y=x2﹣2x+2上運動.過點A作AC⊥x軸于點C,以AC為對角線作矩形ABCD,連結BD,則對角線BD的最小值為_______.18.反比例函數的圖象在每一象限內,y隨著x的增大而增大,則k的取值范圍是______.三、解答題(共78分)19.(8分)一段路的“擁堵延時指數”計算公式為:擁堵延時指數=,指數越大,道路越堵。高德大數據顯示第二季度重慶擁堵延時指數首次排全國榜首。為此,交管部門在A、B兩擁堵路段進行調研:A路段平峰時汽車通行平均時速為45千米/時,B路段平峰時汽車通行平均時速為50千米/時,平峰時A路段通行時間是B路段通行時間的倍,且A路段比B路段長1千米.(1)分別求平峰時A、B兩路段的通行時間;(2)第二季度大數據顯示:在高峰時,A路段的擁堵延時指數為2,每分鐘有150輛汽車進入該路段;B路段的擁堵延時指數為1.8,每分鐘有125輛汽車進入該路段。第三季度,交管部門采用了智能紅綠燈和潮汐車道的方式整治,擁堵狀況有明顯改善,在高峰時,A路段擁堵延時指數下降了a%,每分鐘進入該路段的車輛增加了;B路段擁堵延時指數下降,每分鐘進入該路段的車輛增加了a輛。這樣,整治后每分鐘分別進入兩路段的車輛通過這兩路段所用時間總和,比整治前每分鐘分別進入這兩段路的車輛通過這兩路段所用時間總和多小時,求a的值.20.(8分)如圖,正方形ABCD的頂點A在等腰直角三角形DEF的斜邊EF上,EF與BC相交于點G,連接CF.(1)求證:△DAE≌△DCF;(2)求證:△ABG∽△CFG;(3)若正方形ABCD的的邊長為2,G為BC的中點,求EF的長.21.(8分)(1)解方程:(2)如圖已知⊙的直徑,弦與弦平行,它們之間的距離為7,且,求弦的長.22.(10分)計算:2cos30°-tan45°-.23.(10分)一個盒子中裝有兩個紅球,一個白球和一個藍球,這些球除顏色外都相同,從中隨機摸出一個球,記下顏色后放回,再從中隨機摸出一個球,請你用列表法和畫樹狀圖法求兩次摸到的球的顏色能配成紫色的概率(說明:紅色和藍色能配成紫色)24.(10分)如圖,在矩形ABCD中,AB=3,AD=6,點E在AD邊上,且AE=4,EF⊥BE交CD于點F.(1)求證:△ABE∽△DEF;(2)求EF的長.25.(12分)如圖,AB為⊙O的直徑,C為⊙O上一點,過點C做⊙O的切線,與AE的延長線交于點D,且AD⊥CD.(1)求證:AC平分∠DAB;(2)若AB=10,CD=4,求DE的長.26.飛行員將飛機上升至離地面米的點時,測得點看樹頂點的俯角為,同時也測得點看樹底點的俯角為,求該樹的高度(結果保留根號).
參考答案一、選擇題(每題4分,共48分)1、A【分析】作輔助線,連接OA,根據垂徑定理得出AE=BE=4,設圓的半徑為r,再利用勾股定理求解即可.【詳解】解:如圖,連接OA,設圓的半徑為r,則OE=r-2,∵弦,∴AE=BE=4,由勾股定理得出:,解得:r=5,故答案為:A.【點睛】本題考查的知識點主要是垂徑定理、勾股定理及其應用問題;解題的關鍵是作輔助線,靈活運用勾股定理等幾何知識點來分析、判斷或解答.2、C【分析】根據前三個圖形可得到第n個圖形一共有個五角星,當n=7代入計算即可.【詳解】解:第①個圖形一共有個五角星;第②個圖形一共有個五角星;第③個圖形一共有個五角星;……第n個圖形一共有個五角星,所以第⑦個圖形一共有個五角星.故答案選C.【點睛】本題主要考查規律探索,解題的關鍵是找準規律.3、C【分析】根據中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】A、不是中心對稱圖形,故本選項不合題意;B、不是中心對稱圖形,故本選項不合題意;C、是中心對稱圖形,故本選項符合題意;D、不是中心對稱圖形,故本選項不合題意.故選:C.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.4、A【分析】①根據不等式的性質進行判斷;②根據圓心角、弧、弦的關系進行分析即可;③根據正多邊形的定義進行判斷;④根據平方根的性質進行判斷即可.【詳解】①若m2=0,則,此命題是假命題;②在同圓或等圓中,相等的圓心角所對的弧相等,此命題是假命題;③各邊相等,各內角相等的多邊形是正多邊形,此命題是假命題;④=4,4的平方根是,此命題是假命題.所以原命題是真命題的個數為0,故選:A.【點睛】本題主要考查命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題,判斷命題的真假關鍵是要熟悉課本中的性質定理.5、B【解析】試題分析:在本題中,若所給的式子要配成完全平方式,常數項應該是一次項系數-4的一半的平方;可將常數項3拆分為4和-1,然后再按完全平方公式進行計算.解:x2-4x+3=x2-4x+4-1=(x-2)2-1.故選B.考點:配方法的應用.6、A【解析】試題分析:根據拋物線y=x2+bx+c(其中b,c是常數)過點A(2,6),且拋物線的對稱軸與線段y=0(1≤x≤3)有交點,可以得到c的取值范圍,從而可以解答本題.∵拋物線y=x2+bx+c(其中b,c是常數)過點A(2,6),且拋物線的對稱軸與線段y=0(1≤x≤3)有交點,∴解得6≤c≤14考點:二次函數的性質7、C【分析】根據反比例函數的性質得m﹣1>0,然后解不等式即可.【詳解】解:根據題意得m﹣1>0,解得m>1.故選:C.【點睛】本題主要考查的是反比例函數的性質,當k>0時,圖像在第一、三象限內,根據這個性質即可解出答案.8、B【分析】根據旋轉的性質可得:△PBC≌△P′BA,故∠PBC=∠P′BA,即可求解.【詳解】由已知得△PBC≌△P′BA,所以∠PBC=∠P′BA,所以∠PBP′=∠P′BA+∠PBA,=∠PBC+∠PBA,=∠ABC,=60°.故選:B.【點睛】本題考查旋轉的性質.旋轉變化前后,對應線段、對應角分別相等,圖形的大小、形狀都不改變.9、C【解析】∵拋物線的頂點在第四象限,∴﹣>1,<1.∴<1,∴一次函數的圖象經過二、三、四象限.故選C.10、B【分析】根據軸對稱圖形與中心對稱圖形的定義解答.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形;B、是軸對稱圖形,也是中心對稱圖形;C、是中心對稱圖形,不是軸對稱圖形;D、是軸對稱圖形,不是中心對稱圖形.故選:B.【點睛】掌握中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.11、D【解析】連接OC,則有∠BOC=2∠A=2α,∵OB=OC,∴∠OBC=∠OCB,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2α=180°,∴∠OBC=90°-α,故選D.12、B【解析】試題分析:∵從半徑為9cm的圓形紙片上剪去圓周的一個扇形,∴留下的扇形的弧長==12π,根據底面圓的周長等于扇形弧長,∴圓錐的底面半徑r==6cm,∴圓錐的高為=3cm故選B.考點:圓錐的計算.二、填空題(每題4分,共24分)13、【分析】利用扇形的面積公式等邊三角形的性質解決問題即可.【詳解】解:由題意可得,AD=BD=AB=AC=BC,∴△ABD和△ABC時等邊三角形,∴陰影部分的面積為:故答案為﹣4.【點睛】考核知識點:扇形面積.熟記扇形面積是關鍵.14、60°.【分析】過點作⊥軸,構造直角三角形之后運用三角函數即可解答。【詳解】解:過點作⊥軸,中,,∠,∠=°.【點睛】本題考查在平面直角坐標系中將點坐標轉化為線段長度,和運用三角函數求角的度數問題,熟練掌握和運用這些知識點是解答關鍵.15、5【分析】先確定外接圓的半徑是AB,圓心在AB的中點,再計算AB的長,由此求出外接圓的半徑為5.【詳解】∵在△ABC中,∠C=90°,∴△ABC外接圓直徑為斜邊AB、圓心是AB的中點,∵∠C=90°,AC=6,BC=8,∴,∴△ABC外接圓半徑為5.故答案為:5.【點睛】此題考查勾股定理的運用、三角形外接圓的確定.根據圓周角定理,直角三角形的直角所對的邊為直徑,即可確定圓的位置及大小.16、(﹣2,5)【分析】已知拋物線的頂點式,可直接寫出頂點坐標.【詳解】解:由y=3(x+2)2+5,根據頂點式的坐標特點可知,頂點坐標為(﹣2,5).故答案為:(﹣2,5).【點睛】本題考查二次函數的性質,熟知二次函數的頂點式是解題的關鍵,即在y=a(x-h)2+k中,頂點坐標為(h,k),對稱軸為x=h.17、1【分析】根據矩形的性質得到BD=AC,所以求BD的最小值就是求AC的最小值,當點A在拋物線頂點的時候AC是最小的.【詳解】解:∵,∴拋物線的頂點坐標為(1,1),∵四邊形ABCD為矩形,∴BD=AC,而AC⊥x軸,∴AC的長等于點A的縱坐標,當點A在拋物線的頂點時,點A到x軸的距離最小,最小值為1,∴對角線BD的最小值為1.故答案為:1.【點睛】本題考查矩形的性質和二次函數圖象的性質,解題的關鍵是通過矩形的性質將要求的BD轉化成可以求最小值的AC.18、【分析】利用反比例函數圖象的性質即可得.【詳解】由反比例函數圖象的性質得:解得:.【點睛】本題考查了反比例函數圖象的性質,對于反比例函數有:(1)當時,函數圖象位于第一、三象限,且在每一象限內,y隨x的增大而減小;(2)當時,函數圖象位于第二、四象限,且在每一象限內,y隨x的增大而增大.三、解答題(共78分)19、(1)平峰時A路段的通行時間是小時,平峰時B路段的通行時間是小時;(2)的值是1.【分析】(1)根據題意,設平峰時B路段通行時間為小時,則平峰時A路段通行時間是,列出方程,解方程即可得到答案;(2)根據題意,先求出整治前A、B路段的時間總和,然后利用含a的代數式求出整治后A、B路段的時間總和,再列出方程,求出a的值.【詳解】解:(1)設平峰時B路段通行時間為小時,則平峰時A路段通行時間是,則,解得:,∴(小時);∴平峰時A路段的通行時間是小時,平峰時B路段的通行時間是小時;(2)根據題意,整治前有:高峰時,通過A路段的總時間為:(分鐘),高峰時,通過B路段的總時間為:(分鐘);整治前的時間總和為:(分鐘);整治后有:通過A路段的總時間為:;通過B路段的總時間為:;∴整治后的時間總和為:;∴,整理得:,解得:或(舍去);∴的值是1.【點睛】本題考查了一元二次方程的應用,一元一次方程的應用,解題的關鍵是熟練掌握題意,正確列出方程進行解題.注意尋找題目的等量關系進行列方程.20、(1)證明見解析;(2)證明見解析;(3)EF=.【分析】(1)根據正方形的性質有AD=CD,根據等腰直角三角形的性質有DE=DF,已知兩邊嘗試找其夾角對應相等,根據等角的余角相等可得,∠ADE=∠CDF,據此可證;(2)此題有多種方法可解,可以延長BA交DE與M,結合第(1)問全等三角形的結論用等角做差求得∠BAG=∠FCG,再加上一對對頂角相等即可證明;(3)根據第(2)問相似三角形的結論,易得,在Rt△CFG中得到了兩直角邊CF與FG的倍數關系,再運用勾股定理即可解出CF與FG的長度,又AE=CF,即可解答.【詳解】證明:(1)∵正方形ABCD,等腰直角三角形EDF,∴∠ADC=∠EDF=90°,AD=CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,,∠=∠,;∴△ADE≌△CDF(SAS);(2)延長BA到M,交ED于點M,∵△ADE≌△CDF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF,∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF,∵∠EAM=∠BAG,∴∠BAG=∠BCF,∵∠AGB=∠CGF,∴△ABG∽△CFG.(3)∵正方形ABCD的的邊長為2,G為BC的中點,∴BG=CG=1,AG=,∵△ABG∽△CFG,∴,CF=2FG,∵CF2+FG2=CG2,(2FG)2+FG2=12,∴GF=,CF=,∵△DAE≌△DCF,∴AE=CF,∴EF=EA+AG+GF=CF+AG+GF=++=.【點睛】本題綜合考查了正方形與等腰直角三角形的性質,全等三角形與相似三角形的判定,勾股定理的應用等知識,熟練掌握各個知識點,并以正確的思維靈活運用是解答關鍵.21、(1);(2)1.【分析】(1)先移項,然后利用因式分解法解方程即可(2)作OM⊥AB于M,ON⊥CD于N,連接OA、OC,根據垂徑定理求出AM,根據勾股定理求出OM,根據題意求出ON,根據勾股定理、垂徑定理計算即可.【詳解】(1)解:∵或(2)作OM⊥AB于M,ON⊥CD于N,連接OA、OC,則∵∴點在同一條直線上,在中∴在中,∵∴【點睛】本題考查了解一元二次方程、垂徑定理和勾股定理的應用,掌握垂直于弦的直徑平分這條弦是解題的關鍵.22、-1.【分析】分別計算特殊角三角函數值和算術平方根,然后再計算加減法.【詳解】原式===-1.考點:實數的混合運算,特殊角的三角函數的混合運算.23、.【分析】利用畫樹狀圖法得到總的可能和可能發生的結果數,即可求出概率.【詳解】解:畫樹狀圖為:共有16種等可能的結果數,其中紅色和藍色的結果數4,所以摸到的兩個球的顏色能配成紫色的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式求事件A或B的概率.24、(1)見解析;(2).【分析】(1)根據矩形的性質可得∠A=∠D=90°,再根據同角的余角相等求出∠1=∠3,然后利用兩角對應相等,兩三角形相似證明;
(2)利用勾股定理列式求出BE,再求出DE,然后根據相似三角形對應邊成比例列式求解即可.【詳解】(1)證明:在矩形ABCD中,∠A=∠D=90°,
∴∠1+∠2=90°,
∵EF⊥BE,
∴∠2+∠3=180°-90°=90°,
∴∠1=∠3,
又∵∠A=∠D=90°,
∴△ABE∽△DEF;
(2)∵AB=3,AE=4,
∴BE==5,
∵AD=6,AE=4,
∴DE=AD-AE=6-4=2,
∵△ABE∽△DEF,
∴,即,
解得EF=.【點睛】本題考查了相似三角形的判定與性質,矩形的性質,利用同角的余角相等求出相等的銳角是證明三角形相似的關鍵.25、(1)見解析;(1)DE=1【分析】(1)連接OC,利用切線的性質可得出OC∥AD,再根據平行線的性質得出∠DAC=∠OCA,又因為∠OCA=∠OAC,繼而可得出結論;(1)方法一:連接BE交OC于點H,可證明四邊形EHCD為矩形,再根據垂徑定理可得出,得出,從而得出,再通過三角形中位線定理可得出,繼而得出結論;方法二:連接BC、EC,可證明△ADC∽△ACB,利用相似三角形的性質可得出AD=8,再證△DEC∽△DCA,從而可得出結論;方法三:連接BC、EC,過點C做CF⊥AB,垂足為F,利用已知條件得出OF=3,再證明△DEC≌△CFB,利用全等三角形的性質即可得出答案.【詳解】解:(1)證明:連接OC,∵CD切☉O于點C∴OC⊥CD∵AD⊥CD∴∠D=∠OCD=90°∴∠D+∠OCD=180°∴OC∥AD∴∠DAC=∠OCA∵OA=OC∴∠OCA=∠OAC∴∠DAC=∠OAC∴AC平分DAB(1)方法1:連接BE交OC于點H∵AB是☉
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設備沉降觀測管理制度
- 設備設施檢查管理制度
- 設計公司人事管理制度
- 設計服飾搭配管理制度
- 評估公司人事管理制度
- 診所抓藥日常管理制度
- 診所行風建設管理制度
- 試驗設施器材管理制度
- 財務部精細化管理制度
- 財政直達資金管理制度
- 2024網站滲透測試報告
- 2024年中國建筑西南勘察設計研究院有限公司招聘筆試參考題庫含答案解析
- DG-TJ08-2433A-2023 外墻保溫一體化系統應用技術標準(預制混凝土反打保溫外墻)
- 教師法制教育培訓課件
- 眾包物流模式下的資源整合與分配
- 鐵路貨運流程課件
- 四川省成都市成華區2023-2024學年七年級上學期期末數學試題(含答案)
- 慢性硬膜下血腫護理要點大揭秘
- 管工基礎知識培訓課件
- 成人氣管切開拔管中國專家共識解讀
- “微”力量微博營銷
評論
0/150
提交評論