




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省西安電子科技大附中2025屆九上數學期末經典模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.如圖,已知圓錐側面展開圖的扇形面積為65cm2,扇形的弧長為10cm,則圓錐母線長是()A.5cm B.10cm C.12cm D.13cm2.在陽光的照射下,一塊三角板的投影不會是()A.線段 B.與原三角形全等的三角形C.變形的三角形 D.點3.老師出示了如圖所示的小黑板上的題后,小華說:過點;小明說:;小穎說:軸被拋物線截得的線段長為2,三人的說法中,正確的有()A.1個 B.2個 C.3個 D.0個4.我市組織學生開展志愿者服務活動,小晴和小霞從“圖書館,博物館,科技館”三個場館中隨機選擇一個參加活動,兩人恰好選擇同一場館的概率是()A. B. C. D.5.“鳳鳴”文學社在學校舉行的圖書共享儀式上互贈圖書,每個同學都把自己的圖書向本組其他成員贈送一本,某組共互贈了210本圖書,如果設該組共有x名同學,那么依題意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=2106.如圖,在△ABC中,點D、E分別在邊BA、CA的延長線上,=2,那么下列條件中能判斷DE∥BC的是()A. B. C. D.7.在中,,,,則直角邊的長是()A. B. C. D.8.已知兩圓半徑分別為6.5cm和3cm,圓心距為3.5cm,則兩圓的位置關系是()A.相交 B.外切 C.內切 D.內含9.如圖是由4個大小相同的小正方體擺成的幾何體,它的左視圖是()A. B. C. D.10.下列幾何體的三視圖相同的是(
)A.圓柱
B.球
C.圓錐
D.長方體二、填空題(每小題3分,共24分)11.在某一時刻,測得一根高為2m的竹竿的影長為1m,同時測得一棟建筑物的影長為12m,那么這棟建筑物的高度為_____m.12.甲、乙兩車從A地出發,沿同一路線駛向B地.甲車先出發勻速駛向B地,40min后,乙車出發,勻速行駛一段時間后,在途中的貨站裝貨耗時半小時.由于滿載貨物,為了行駛安全,速度減少了50km/h,結果與甲車同時到達B地,甲乙兩車距A地的路程()與乙車行駛時間()之間的函數圖象如圖所示,則下列說法:①②甲的速度是60km/h;③乙出發80min追上甲;④乙車在貨站裝好貨準備離開時,甲車距B地150km;⑤當甲乙兩車相距30km時,甲的行駛時間為1h、3h、h;其中正確的是__________.13.如圖,AB是⊙O的直徑,C、D為⊙O上的點,P為圓外一點,PC、PD均與圓相切,設∠A+∠B=130°,∠CPD=β,則β=_____.14.如圖,的頂點都在方格紙的格點上,則_______.15.如圖,在4×4的正方形網絡中,已將部分小正方形涂上陰影,有一個小蟲落到網格中,那么小蟲落到陰影部分的概率是____.16.已知線段,點是它的黃金分割點,,設以為邊的正方形的面積為,以為鄰邊的矩形的面積為,則與的關系是__________.17.計算:﹣tan60°=_____.18.如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把△CDB旋轉90°,則旋轉后點D的對應點D′的坐標是___________.三、解答題(共66分)19.(10分)如圖,矩形中,為原點,點在軸上,點在軸上,點的坐標為(4,3),拋物線與軸交于點,與直線交于點,與軸交于兩點.(1)求拋物線的表達式;(2)點從點出發,在線段上以每秒1個單位長度的速度向點運動,與此同時,點從點出發,在線段上以每秒個單位長度的速度向點運動,當其中一點到達終點時,另一點也停止運動.連接,設運動時間為(秒).①當為何值時,得面積最小?②是否存在某一時刻,使為直角三角形?若存在,直接寫出的值;若不存在,請說明理由.20.(6分)如圖,矩形ABCD中,AB=3,BC=5,CD上一點E,連接AE,將△ADE繞點A旋轉90°得△AFG,連接EG、DF.(1)畫出圖形;(2)若EG、DF交于BC邊上同一點H,且△GFH是等腰三角形,試計算CE長.21.(6分)如圖,AN是⊙O的直徑,四邊形ABMN是矩形,與圓相交于點E,AB=15,D是⊙O上的點,DC⊥BM,與BM交于點C,⊙O的半徑為R=1.(1)求BE的長.(2)若BC=15,求的長.22.(8分)如圖,在平面直角坐標系中,直線分別交x軸、y軸于點B,C,正方形AOCD的頂點D在第二象限內,E是BC中點,OF⊥DE于點F,連結OE,動點P在AO上從點A向終點O勻速運動,同時,動點Q在直線BC上從某點Q1向終點Q2勻速運動,它們同時到達終點.(1)求點B的坐標和OE的長;(2)設點Q2為(m,n),當tan∠EOF時,求點Q2的坐標;(3)根據(2)的條件,當點P運動到AO中點時,點Q恰好與點C重合.①延長AD交直線BC于點Q3,當點Q在線段Q2Q3上時,設Q3Q=s,AP=t,求s關于t的函數表達式.②當PQ與△OEF的一邊平行時,求所有滿足條件的AP的長.23.(8分)某大型商場出售一種時令鞋,每雙進價100元,售價300元,則每天能售出400雙.經市場調查發現:每降價10元,則每天可多售出50雙.設每雙降價x元,每天總獲利y元.(1)如果降價40元,每天總獲利多少元呢?(2)每雙售價為多少元時,每天的總獲利最大?最大獲利是多少?24.(8分)先化簡:,再求代數式的值,其中是方程的一個根.25.(10分)已知二次函數y=x2﹣4x+1.(1)在所給的平面直角坐標系中畫出它的圖象;(2)若三點A(x1,y1),B(x2,y2),C(x1.y1)且2<x1<x2<x1,則y1,y2,y1的大小關系為.(1)把所畫的圖象如何平移,可以得到函數y=x2的圖象?請寫出一種平移方案.26.(10分)關于的一元二次方程有兩個不相等且非零的實數根,探究滿足的條件.小華根據學習函數的經驗,認為可以從二次函數的角度研究一元二次方程的根的符號。下面是小華的探究過程:第一步:設一元二次方程對應的二次函數為;第二步:借助二次函數圖象,可以得到相應的一元二次方程中滿足的條件,列表如下表。方程兩根的情況對應的二次函數的大致圖象滿足的條件方程有兩個不相等的負實根①_______方程有兩個不相等的正實根②③____________(1)請將表格中①②③補充完整;(2)已知關于的方程,若方程的兩根都是正數,求的取值范圍.
參考答案一、選擇題(每小題3分,共30分)1、D【解析】∴選D2、D【分析】將一個三角板放在太陽光下,當它與陽光平行時,它所形成的投影是一條線段;當它與陽光成一定角度但不垂直時,它所形成的投影是三角形.【詳解】解:根據太陽高度角不同,所形成的投影也不同.當三角板與陽光平行時,所形成的投影為一條線段;當它與陽光形成一定角度但不垂直時,它所形成的投影是三角形,不可能是一個點,故選D.【點睛】本題考查了平行投影特點,不同位置,不同時間,影子的大小、形狀可能不同,具體形狀應視其外在形狀,及其與光線的夾角而定.3、B【分析】根據圖上給出的條件是與x軸交于(1,0),叫我們加個條件使對稱軸是,意思就是拋物線的對稱軸是是題目的已知條件,這樣可以求出的值,然后即可判斷題目給出三人的判斷是否正確.【詳解】∵拋物線過(1,0),對稱軸是,∴解得,
∴拋物線的解析式為,
當時,,所以小華正確;∵,所以小明正確;
拋物線被軸截得的線段長為2,已知過點(1,0),則可得另一點為(-1,0)或(3,0),所以對稱軸為y軸或,此時答案不唯一,所以小穎錯誤.綜上,小華、小明正確,
故選:B.【點睛】本題考查了拋物線與軸的交點以及待定系數法求二次函數解析式,利用待定系數法求出拋物線的解析式是解題的關鍵.4、A【分析】畫樹狀圖(用A、B、C分別表示“圖書館,博物館,科技館”三個場館)展示所有9種等可能的結果數,找出兩人恰好選擇同一場館的結果數,然后根據概率公式求解.【詳解】解:畫樹狀圖為:(用A、B、C分別表示“圖書館,博物館,科技館”三個場館)
共有9種等可能的結果數,其中兩人恰好選擇同一場館的結果數為3,
所以兩人恰好選擇同一場館的概率,故選:A.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.5、B【詳解】設全組共有x名同學,那么每名同學送出的圖書是(x?1)本;則總共送出的圖書為x(x?1);又知實際互贈了210本圖書,則x(x?1)=210.故選:B.6、D【分析】只要證明,即可解決問題.【詳解】解:A.,可得AE:AC=1:1,與已知不成比例,故不能判定B.,可得AC:AE=1:1,與已知不成比例,故不能判定;C選項與已知的,可得兩組邊對應成比例,但夾角不知是否相等,因此不一定能判定;D.,可得DE//BC,故選D.【點睛】本題考查平行線的判定,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.7、B【分析】根據余弦的定義求解.【詳解】解:∵在Rt△ABC中,∠C=90°,cosB=,
∴BC=10cos40°.
故選:B.【點睛】本題考查解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.8、C【解析】先求兩圓半徑的和與差,再與圓心距進行比較,確定兩圓的位置關系.【詳解】∵兩圓的半徑分別為6.5cm和3cm,圓心距為3.5cm,且6.5﹣3=3.5,∴兩圓的位置關系是內切.故選:C.【點睛】考查了由數量關系來判斷兩圓位置關系的方法.設兩圓的半徑分別為R和r,且R≥r,圓心距為d:外離d>R+r;外切d=R+r;相交R﹣r<d<R+r;內切d=R﹣r;內含d<R﹣r.9、C【分析】根據左視圖即從物體的左面觀察得得到的視圖,進而得出答案.【詳解】如圖所示,該幾何體的左視圖是:.故選C.【點睛】此題主要考查了幾何體的三視圖;掌握左視圖是從幾何體左面看得到的平面圖形是解決本題的關鍵.10、B【解析】試題分析:選項A、圓柱的三視圖,如圖所示,不合題意;選項B、球的三視圖,如圖所示,符合題意;選項C、圓錐的三視圖,如圖所示,不合題意;選項D、長方體的三視圖,如圖所示,不合題意;.故答案選B.考點:簡單幾何體的三視圖.二、填空題(每小題3分,共24分)11、1.【解析】試題解析:設這棟建筑物的高度為由題意得解得:即這棟建筑物的高度為故答案為1.12、②③【分析】根據一次函數的性質和該函數的圖象對各項進行求解即可.【詳解】∵線段DE代表乙車在途中的貨站裝貨耗時半小時,∴a=4+0.5=4.5(小時),即①不成立;∵40分鐘=小時,∴甲車的速度為460÷(7+)=60(千米/時),即②成立;設乙車剛出發時的速度為x千米/時,則裝滿貨后的速度為(x﹣50)千米/時,根據題意可知:4x+(7﹣4.5)(x﹣50)=460,解得:x=1.乙車發車時,甲車行駛的路程為60×=40(千米),乙車追上甲車的時間為40÷(1﹣60)=(小時),小時=80分鐘,即③成立;乙車剛到達貨站時,甲車行駛的時間為(4+)小時,此時甲車離B地的距離為460﹣60×(4+)=180(千米),即④不成立.設當甲乙兩車相距30km時,甲的行駛時間為x小時,由題意可得1)乙車未出發時,即解得∵∴是方程的解2)乙車出發時間為解得解得3)乙車出發時間為解得∵所以不成立4)乙車出發時間為解得故當甲乙兩車相距30km時,甲的行駛時間為h、1h、3h、h,故⑤不成立故答案為:②③.【點睛】本題考查了兩車的路程問題,掌握一次函數的性質是解題的關鍵.13、100°【分析】連結OC,OD,則∠PCO=90°,∠PDO=90°,可得∠CPD+∠COD=180°,根據OB=OC,OD=OA,可得∠BOC=180°?2∠B,∠AOD=180°?2∠A,則可得出與β的關系式.進而可求出β的度數.【詳解】連結OC,OD,∵PC、PD均與圓相切,∴∠PCO=90°,∠PDO=90°,∵∠PCO+∠COD+∠ODP+∠CPD=360°,∴∠CPD+∠COD=180°,∵OB=OC,OD=OA,∴∠BOC=180°﹣2∠B,∠AOD=180°﹣2∠A,∴∠COD+∠BOC+∠AOD=180°,∴180°﹣∠CPD+180°﹣2∠B+180°﹣2∠A=180°.∴∠CPD=100°,故答案為:100°.【點睛】本題利用了切線的性質,圓周角定理,四邊形的內角和為360度求解,解題的關鍵是熟練掌握切線的性質.14、【分析】如下圖,先構造出直角三角形,然后根據sinA的定義求解即可.【詳解】如下圖,過點C作AB的垂線,交AB延長線于點D設網格中每一小格的長度為1則CD=1,AD=3∴在Rt△ACD中,AC=∴sinA=故答案為:.【點睛】本題考查銳角三角函數的求解,解題關鍵是構造出直角三角形ACD.15、【解析】本題應分別求出正方形的總面積和陰影部分的面積,用陰影部分的面積除以總面積即可得出概率.【詳解】解:小蟲落到陰影部分的概率=,故答案為:.【點睛】本題考查的是概率的公式,用到的知識點為:概率=相應的面積與總面積之比.16、【分析】根據黃金分割比得出AP,PB的長度,計算出與即可比較大?。驹斀狻拷猓骸唿c是AB的黃金分割點,,∴,設AB=2,則,∴∴故答案為:.【點睛】本題考查了黃金分割比的應用,熟知黃金分割比是解題的關鍵.17、2.【分析】先運用二次根式的性質和特殊角的三角函數進行化簡,然后再進行計算即可.【詳解】解:﹣tan60°=3﹣=2.故答案為:2.【點睛】本題考查了基本運算,解答的關鍵是靈活運用二次根式的性質對二次根式進行化簡、牢記特殊角的三角函數值.18、(2,10)或(﹣2,0)【解析】∵點D(5,3)在邊AB上,∴BC=5,BD=5﹣3=2,①若順時針旋轉,則點D′在x軸上,OD′=2,所以,D′(﹣2,0),②若逆時針旋轉,則點D′到x軸的距離為10,到y軸的距離為2,所以,D′(2,10),綜上所述,點D′的坐標為(2,10)或(﹣2,0).三、解答題(共66分)19、(1);(2)①;②【分析】(1)根據點B的坐標可得出點A,C的坐標,代入拋物線解析式即可求出b,c的值,求得拋物線的解析式;(2)①過點Q、P作QF⊥AB、PG⊥AC,垂足分別為F、G,推出△QFA∽△CBA,△CGP∽△CBA,用含t的式子表示OF,PG,將三角形的面積用含t的式子表示出來,結合二次函數的性質可求出最值;②由于三角形直角的位置不確定,需分情況討論,根據點的坐標,再結合兩點間的距離公式用勾股定理求解即可.【詳解】解:(1)由題意知:A(0,3),C(4,0),∵拋物線經過A、B兩點,∴,解得,,∴拋物線的表達式為:.(2)①∵四邊形ABCD是矩形,∴∠B=90O,∴AC2=AB2+BC2=5;由,可得,∴D(2,3).過點Q、P作QF⊥AB、PG⊥AC,垂足分別為F、G,∵∠FAQ=∠BAC,∠QFA=∠CBA,∴△QFA∽△CBA.∴,∴.同理:△CGP∽△CBA,∴∴,∴,當時,△DPQ的面積最小.最小值為.②由圖像可知點D的坐標為(2,3),AC=5,直線AC的解析式為:.三角形直角的位置不確定,需分情況討論:當時,根據勾股定理可得出:,整理,解方程即可得解;當時,可知點G運動到點B的位置,點P運動到C的位置,所需時間為t=3;當時,同理用勾股定理得出:;整理求解可得t的值.由此可得出t的值為:,,,,.【點睛】本題考查的知識點是二次函數與幾何圖形的動點問題,掌握二次函數圖象的性質是解此題的關鍵.20、(1)見解析;(2)CE=3-【分析】(1)根據題意作圖即可;(2)根據旋轉的性質得到DE=FG,△ADF、△BHF是等腰直角三角形,故求出FH=,再根據等腰三角形的性質得到GF=FH==DE,故可求出CE的長.【詳解】解:(1)如圖所示:(2)由旋轉得,AD=AF=5,DE=GF∵∠BAD=90°∴△ADF為等腰直角三角形,∴A、B、F在同一直線上∴BF=2=BH∴△BHF為等腰直角三角形,∴HF==,∵△GFH是等腰三角形且∠GFH=90°+45°=135°∴GF=FH==DE∵CD=AB=3∴CE=CD-DE=3-.【點睛】此題主要考查矩形及旋轉的性質,解題的關鍵是熟知等腰三角形的判定與性質.21、(1)1﹣15;(2)15π【分析】(1)連接OE,過O作OF⊥BM于F,在Rt△OEF中,由勾股定理得出EF的長,進而求得EB的長.(2)連接OD,則在直角三角形ODQ中,可求得∠QOD=60°,過點E作EH⊥AO于H,在直角三角形OEH中,可求得∠EOH=1°,則得出的長度.【詳解】解:(1)連接OE,過O作OF⊥BM于F,則四邊形ABFO是矩形,∴FO=AB=15,BF=AO,在Rt△OEF中,EF==15,∵BF=AO=1,∴BE=1﹣15.(2)連接OD,在直角三角形ODQ中,∵OD=1,OQ=1﹣15=15,∴∠ODQ=1°,∴∠QOD=60°,過點E作EH⊥AO于H,在直角三角形OEH中,∵OE=1,EH=15,∴,∴∠EOH=1°,∴∠DOE=90°,∴=π?60=15π.【點睛】本題考查了直角三角形的性質,弧長的計算、矩形的性質以及垂徑定理,是基礎知識要熟練掌握.22、(1)(8,0),;(2)(6,1);(3)①,②的長為或.【分析】(1)令y=0,可得B的坐標,利用勾股定理可得BC的長,即可得到OE;(2)如圖,作輔助線,證明△CDN∽△MEN,得CN=MN=1,計算EN的長,根據面積法可得OF的長,利用勾股定理得OF的長,由和,可得結論;(3)①先設s關于t成一次函數關系,設s=kt+b,根據當點P運動到AO中點時,點Q恰好與點C重合,得t=2時,CD=4,DQ3=2,s=,根據Q3(?4,6),Q2(6,1),可得t=4時,s=,利用待定系數法可得s關于t的函數表達式;②分三種情況:(i)當PQ∥OE時,根據,表示BH的長,根據AB=12,列方程可得t的值;(ii)當PQ∥OF時,根據tan∠HPQ=tan∠CDN=,列方程為2t?2=(7?t),可得t的值.(iii)由圖形可知PQ不可能與EF平行.【詳解】解:(1)令,則,∴,∴為.∵為,在中,.又∵為中點,∴.(2)如圖,作于點,則,∴,∴,∴,∴.∵,∴,由勾股定理得,∴,∴.∵,∴,∴為.(3)①∵動點同時作勻速直線運動,∴關于成一次函數關系,設,將和代入得,解得,∴.②(?。┊敃r,(如圖),,作軸于點,則.∵,又∵,∴,∴,∴,∴.(ⅱ)當時(如圖),過點作于點,過點作于點,由得.∵,∴,∴,∴.∵,∴,∴,∴.(ⅲ)由圖形可知不可能與平行.綜上所述,當與的一邊平行時,的長為或.【點睛】此題是一次函數的綜合題,主要考查了:用待定系數法求一次函數關系式,三角形相似的性質和判定,三角函數的定義,勾股定理,正方形的性質等知識,并注意運用分類討論和數形結合的思想解決問題.23、(1)如果降價40元,每天總獲利96000元;(2)每雙售價為240元時,每天的總獲利最大,最大獲利是98000元.【分析】(1)根據題意即可列式求解;(2)根據題意,得y=(400+5x)(300-x-100),根據二次函數的圖像與性質即可求解.【詳解】(1)根據題意知:每降價1元,則每天可多售出5雙,∴(400+5×40)×(300-40-100)=600×160=96000
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學英語四級考試模擬試卷及語法解析大全
- 積極上進主題班會課件
- 金銀花識別技術課件
- 酸和堿反應的課件
- 2025年防火玻璃項目節能評估報告(節能專)
- 2025年中國電子配線組行業發展潛力分析及投資方向研究報告
- 2022-2027年中國網絡控制設備市場競爭態勢及行業投資潛力預測報告
- 危房加固方案
- 中國氣瓶用液化石油氣調節器行業市場前景預測及投資價值評估分析
- 中國智能焊接機器人行業市場深度研究及投資策略研究報告
- 2024年廣東廣州市天河區社區專職工作人員招聘筆試參考題庫附帶答案詳解
- 電池的歷史與發展
- 醫患溝通原則與技巧課件
- 小學學業生涯規劃與目標
- 2023年CQE客訴工程師年度總結及下年規劃
- 國家開放大學《中國法律史》形成性考核1
- 攪拌類設備單機試車原始記錄
- 老舊小區物業投標方案(技術標)
- 國家開放大學法學本科《商法》歷年期末考試試題及答案題庫
- 城市水工程概論
- 空調溫度控制系統的設計與實現畢業論文
評論
0/150
提交評論