2024年新高考1卷數學真題試卷及答案_第1頁
2024年新高考1卷數學真題試卷及答案_第2頁
2024年新高考1卷數學真題試卷及答案_第3頁
2024年新高考1卷數學真題試卷及答案_第4頁
2024年新高考1卷數學真題試卷及答案_第5頁
已閱讀5頁,還剩9頁未讀 繼續免費閱讀

VIP免費下載

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

絕密★啟用前2024年新課標I卷普通高等學校招生全國統一考試數學本試卷共10頁,19小題,滿分150分.注意事項:1.答題前,先將自己的姓名、準考證號、考場號、座位號填寫在試卷和答題卡上,并將準考證號條形碼粘貼在答題卡上的指定位置.2.選擇題的作答:每小題選出答案后,用2B鉛筆把答題卡上對應題目的答案標號涂黑.寫在試卷、草稿紙和答題卡上的非答題區域均無效.3.填空題和解答題的作答:用黑色簽字筆直接答在答題卡上對應的答題區域內.寫在試卷、草稿紙和答題卡上的非答題區域均無效.4.考試結束后,請將本試卷和答題卡一并上交.一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一個選項是正確的.請把正確的選項填涂在答題卡相應的位置上.1.已知集合,則()A. B. C. D.2.若,則()A. B. C. D.3.已知向量,若,則()A. B. C.1 D.24.已知,則()A. B. C. D.5.已知圓柱和圓錐的底面半徑相等,側面積相等,且它們的高均為,則圓錐的體積為()A. B. C. D.6.已知函數為,在R上單調遞增,則a取值的范圍是()A. B. C. D.7.當時,曲線與的交點個數為()A.3 B.4 C.6 D.88.已知函數為的定義域為R,,且當時,則下列結論中一定正確的是()A. B.C. D.二、選擇題:本題共3小題,每小題6分,共18分.在每小題給出的選項中,有多項符合題目要求.全部選對得6分,部分選對的得部分分,選對但不全的得部分分,有選錯的得0分.9.為了解推動出口后的畝收入(單位:萬元)情況,從該種植區抽取樣本,得到推動出口后畝收入的樣本均值,樣本方差,已知該種植區以往的畝收入服從正態分布,假設推動出口后的畝收入服從正態分布,則()(若隨機變量Z服從正態分布,)A. B.C. D.10.設函數,則()A.是的極小值點 B.當時,C.當時, D.當時,11.造型可以做成美麗的絲帶,將其看作圖中曲線C的一部分.已知C過坐標原點O.且C上的點滿足橫坐標大于,到點的距離與到定直線的距離之積為4,則()A. B.點在C上C.C在第一象限的點的縱坐標的最大值為1 D.當點在C上時,三、填空題:本題共3小題,每小題5分,共15分.12.設雙曲線的左右焦點分別為,過作平行于軸的直線交C于A,B兩點,若,則C的離心率為___________.13.若曲線在點處的切線也是曲線的切線,則__________.14.甲、乙兩人各有四張卡片,每張卡片上標有一個數字,甲的卡片上分別標有數字1,3,5,7,乙的卡片上分別標有數字2,4,6,8,兩人進行四輪比賽,在每輪比賽中,兩人各自從自己持有的卡片中隨機選一張,并比較所選卡片上數字的大小,數字大的人得1分,數字小的人得0分,然后各自棄置此輪所選的卡片(棄置的卡片在此后的輪次中不能使用).則四輪比賽后,甲的總得分不小于2的概率為_________.四、解答題:本題共5小題,共77分.解答應寫出文字說明、證明過程或演算步驟.15.記內角A、B、C的對邊分別為a,b,c,已知,(1)求B;(2)若的面積為,求c.16.已知和為橢圓上兩點.(1)求C的離心率;(2)若過P的直線交C于另一點B,且的面積為9,求的方程.17.如圖,四棱錐中,底面ABCD,,.(1)若,證明:平面;(2)若,且二面角的正弦值為,求.18.已知函數(1)若,且,求的最小值;(2)證明:曲線是中心對稱圖形;(3)若當且僅當,求的取值范圍.19.設m為正整數,數列是公差不為0的等差數列,若從中刪去兩項和后剩余的項可被平均分為組,且每組的4個數都能構成等差數列,則稱數列是可分數列.(1)寫出所有的,,使數列是可分數列;(2)當時,證明:數列是可分數列;(3)從中一次任取兩個數和,記數列是可分數列的概率為,證明:.絕密★啟用前2024年普通高等學校招生全國統一考試(新課標I卷)數學一、選擇題1.A2.C3.D4.A5.B6.B7.C8.B二、選擇題9.BC10.ACD11.ABD三、填空題12.13.14.0.5四、解答題15.(1)由余弦定理有,對比已知,可得,因為,所以,從而,又因為,即,注意到,所以.(2)由(1)可得,,,從而,,而,由正弦定理有,從而,由三角形面積公式可知,的面積可表示為,由已知面積為,可得,所以.16.(1)由題意得,解得,所以.(2),則直線的方程為,即,,由(1)知,設點到直線的距離為,則,則將直線沿著與垂直的方向平移單位即可,此時該平行線與橢圓的交點即為點,設該平行線的方程為:,則,解得或,當時,聯立,解得或,即或,當時,此時,直線的方程為,即,當時,此時,直線的方程為,即,當時,聯立得,,此時該直線與橢圓無交點.綜上直線的方程為或.17.(1)因為平面,而平面,所以,又,,平面,所以平面,而平面,所以.因為,所以,根據平面知識可知,又平面,平面,所以平面.(2)如圖所示,過點D作于,再過點作于,連接,因為平面,所以平面平面,而平面平面,所以平面,又,所以平面,根據二面角的定義可知,即為二面角的平面角,即,即.因為,設,則,由等面積法可得,,又,而為等腰直角三角形,所以,故,解得,即.18.(1)時,,其中,則,因為,當且僅當時等號成立,故,而成立,故即,所以的最小值為.,(2)的定義域為,設為圖象上任意一點,關于的對稱點為,因為在圖象上,故,而,,所以也在圖象上,由的任意性可得圖象為中心對稱圖形,且對稱中心為.(3)因為當且僅當,故為的一個解,所以即,先考慮時,恒成立.此時即為在上恒成立,設,則在上恒成立,設,則,當,,故恒成立,故在上為增函數,故即在上恒成立.當時,,故恒成立,故在上為增函數,故即在上恒成立.當,則當時,故在上為減函數,故,不合題意,舍;綜上,在上恒成立時.而當時,而時,由上述過程可得在遞增,故的解為,即的解為.綜上,.19.(1)首先,我們設數列的公差為,則.由于一個數列同時加上一個數或者乘以一個非零數后是等差數列,當且僅當該數列是等差數列,故我們可以對該數列進行適當的變形,得到新數列,然后對進行相應的討論即可.換言之,我們可以不妨設,此后的討論均建立在該假設下進行.回到原題,第1小問相當于從中取出兩個數和,使得剩下四個數是等差數列.那么剩下四個數只可能是,或,或.所以所有可能的就是.(2)由于從數列中取出和后,剩余的個數可以分為以下兩個部分,共組,使得每組成等差數列:①,共組;②,共組.(如果,則忽略②)故數列是可分數列.(3)定義集合,.下面證明,對,如果下面兩個命題同時成立,則數列一定是可分數列:命題1:或;命題2:.我們分兩種情況證明這個結論.第一種情況:如果,且.此時設,,.則由可知,即,故.此時,由于從數列中取出和后,剩余的個數可以分為以下三個部分,共組,使得每組成等差數列:①,共組;②,共組;③,共組.(如果某一部分的組數為,則忽略之)故此時數列是可分數列.第二種情況:如果,且.此時設,,.則由可知,即,故.由于,故,從而,這就意味著.此時,由于從數列中取出和后,剩余的個數可以分為以下四個部分,共組,使得每組成等差數列:①,共組;②,,共組;③全體,其中,共組;④,共組.(如果某一部分的組數為,則忽略之)這里對②和③進行一下解釋:將③中的每一組作為一個橫排,排成一個包含個行,個列的數表以后,個列分別是下面這些數:,,,可以看出每列都是連續的若干個整數,它們再取并以后,將取遍中除開五個集合,,,,中的十個元素以外的所有數.而這十個數中,除開已經去掉的和以外,剩余的八個數恰好就是②中出現的八個數.這就說明我們給出的分組方式滿足要求,故此時數列是可分數列.至此,我們證明了:對,如果前述命題1和命題2同時成立,則數列一定是可分數列.然后我們來考慮這樣的的個數.首先,由于,和各有個元素,故滿足命題1的總共有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論