




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
高中數學解題思想方法技巧
Theinformationthatisworthhaving
Itcomesfromthegenerallearningaccumulationsummary
Theremustbeaproblem
Pleasebecritical!
The34thparametertoopenthedoorThetwosideshumility
lowmeterofinterpretations
parameter
Asthenameimplies
Itisareferencenumber
Forthemainvariablereference.So
Theparameteristothepivotentry
It'sakindofrelationship
Heisthemainservice
Acceptoryuanreuse.
Intheprocessofmathematics
Goingto
Bytheparametersingleadingroleplayscenarioisabnormal.
interestingly
Whatisthe''parameter
Thequestionofwhotochooseisthefirstquestionofsolving
theproblem
Youhavetwooptions
Oneisthattheparametersstandinfrontofthem
Decidedbyyou;Thesecondisthattheparameterisnotatall
Wantyoutobe“outofthinair.”
Lowtypicaldemonstration
(1)P,Q,MandNareallontheellipsex2+=1
FisthefocalpointonthepositiveaxisoftheY-axis
Knownandline
Andthe1ine
,and=0,
FortheareaofthequadrilateralPMQNminimumandmaximum.
Thequadrilateral"no"areaformula
Soit'shardtouseacertainlengthasaparameter
Createfunctionalarea.
Fortunately,
Ithastwoverticaldiagonallines,PQandMN
Sothequadrangleareacanberepresentedbytheirproduct
However,
Theyhavetofindrelationshipswiththeknownellipses
Youalsoneedaparameterk
AndfindthePQ
MNdependenceonktype.Thisis“false”.
[answer]thepicture
BytheconditionknownasMNandPQ
It'stwostringsofanellipse
IntersectatthefocalpointF(0
1)
AndPQMNcoming
ThereisatleastoneinlinePQandNM
Thereistheslope
MightaswellsetPQslopefork.
Thereisnokintheproblemset
Sothere'sa"nomiddleclass"parameter.
Weseeitasaresult
Isthatit
Notonlycanwesay|PQ|=fl(k)
Canalsosaid|MN|=f2(k).example1answerkeyfigure
AndthenwehavePQoverFof0
1)
SothePQequationisy=kx+1
Youplugthisintotheellipticequation(2+k2)x2+2kx-
1=0
Let,ssaythatthecoordinatesofPandQareequaltoxl
Yl)
(x2
Y2)
The
XI=
Thus|PQ|=2(xl,x2)2+2=(yl,y2),i.e.|PQ|=.
[insertlanguage]nomatterintheellipticalequation
OrP
Q
M
InthecoordinatesofN
X,yistherightpivotentry.Thisisthenewfunction
relationshipPQ=fl(k)=signthemainbintranslocation
Theproblemhasbeenturned.
(1)whenkisnotequalto0
TheslopeofMNfor-
Sameasabovecanpush
|MN|=,
SothequadrangleS=|PQ,||MN|=.
Makeu=k2+
ToS=.
Becauseu=k2+2orhigher
Whenk=+1
U=2
S=
AndSisafunctionofuasafunctionofthevariable
so
Sorless<2.
Theaboveisthebackboneofthesolution
Thefollowingk=0
It'sjustasmallsupplement
Inthebeautyofperfection
Onthegroundsof"notlosinggenerality.
Let'ssaythatkdoesnotequal0istheanswer
Belowwords.
(2)whenk=0
MNforthelongaxisoftheellipse
|MN|=2
IPQI=
Sisequalto|,PQ,|,b2,MN,)isequalto2.
Comprehensive(I)(ii)knowledge
ThemaximumvalueofthequadranglePMQNareais2
Minimumvalueis.
TheargumentkwillbeFofx
Theequationofyisequalto0,whichisthefunctionofk
Toachievetheharmoniousstateof"thehomeandthehome”,the
parameterbecomesanimportantroleinsolvingtheproblem
Sometimesbecomealeadingrolein“going”.
[example2]fora£(1,1),pleasemakeinequalityestablished
constantxscope.
Itisnotdifficulttomaketheinequalityofthisproblemas
awhole
Thequestioniswhattodonext!Youaremainlyonx
Whataboutthequadraticinequality?Isgivenprioritytowith
a
We'retalkingaboutaninequality,right?Thedifficultyofthe
pointsisobvious.
Y=theminusfunctiononR
theoriginalinequality:x2+ax>2x+a+l.
Sothat,satimesxminus1plusx2minus2xminus1
Theconstantisformed1].
Thatf(a)=a(x-1)+(x2-2x-1).
Only(-up,1)U(3,+up)towant.Forexample3][function
y=maximumandminimum.
Let'ssayIhavetan=t
They=
Thet2(y-3)-2t+3-3=0,y(1)
t=tan£R,abouttequation(1)therewillbereal
root,△=4-4,3(y-3)(1)yp0.
The3y2T2y+80orless
Solution:2-islessthanorequalto2+.
Namelyymax=2+
Ymin=2
Theoriginaldeformation:sineofxminusycosinexisequal
to2yminus3
Y+phisin(x)=2-3.
|sin(x+phi))1orless
2-3|y|orless.
Squarereduction:3y2T2y+80orless.(downslightly)
Inthiscase,yisafunctionofx
Andit'safunctionofthetrigfunctionwiththerational
component.
Theusualmethodistodeterminetherangeoffunctionsbythe
discussionoftheindependentvariable,x
Butthetwosolutionsofthiscaseare"antivisitors.”
or
There*sarealsolutiontotheequationoft
Ortheboundedpropertyofthesinusoidalfunctiontodeal
directlywiththefunction,srange
Richard
Thereasonis:thesolutionissimple
Andalsocanachieveagoal.
Ifcosineof2thetaplus2msineofthetaminus2mminus2is
true
Tryrealisticnumbermscope.
Theanswerisno
Idon'tthinkofaquadraticformofsinetheta
Butasofmtypeatatime.
Theoriginalinequality:2m(sinetheta-1)<1+sin2theta.
Suchassinetheta=1
Is0<1constant
Atthispointm£R.
Suchassinethetaindicates1
sinethetaG[1,1]
Onlysineoftheta.
Sothesinetheta-1<0.
2m>2-
(1-sinetheta)+p2.
Ifandonlyif1minussineofthetaisequalto
Whenthesinetheta=1-
=2,
=2-2.
Tomake2m>constant,just2m>,2minus2
...m>1.
Combined:m(1-)
+up).
WeknowthatthedynamicpointPisthetwofocalpointsofthe
hyperbola=1
Fl
ThesumofthedistancesofF2isdetermined
AndtheminimumvalueofthecosineAngleF1PF2iszero.
(1)thetrajectoryequationofthedynamicpointP;
(2)ifweknowD(0,3)
M,NisonthetrajectoryofthepointP
And=lambda.
Thescopeofrealisticnumberlambda.
(1)thetrajectoryofamovingpointisanellipse
WhenPisontheellipse
Bycos<F1PF2=<0
TheAngleF1PF2willbeobtuseandthemaximumAngle
ThePshouldbetheshortaxisendpoint(proof)
Taketheellipticequations.
(2)MandNinellipticon,=lambda,
withcollinear,availableforreference,example
illustration5refs
Thewaytodeterminethescopeofthelambda.
(1)let'ssayP(x,y)isalittlebitonthetrajectory
Life|PF1|=rl
|PF2|=r2
rl+r2=2afixedvalue
and
Fl(0),
F2(
0)forfixed-point.
theellipticallocusofP
Known(cos<F1PF2)min=.
Andcos<F1PF2=
Here>0
Andrlr2=a2orless
acuity
thus
Cos<F1PF2-p-1=1.
Ifandonlyifrl=r2
WhenPistheshortaxis,1minusisequalto
a2=9
c2=5
,b2=4.
petitionstrajectoryequationofthefixedpointPthe:=
1.
(1)thepointD(0,3)isoutsidetheellipse
IfM(M
S)
N(N
T)ontheellipse.
=lambda.
Namely(m
S-lambda(n=3)
T-3),
??????
Eliminationofn2:
Jane:(13lambda-5)(lambda-1)=6tlambda(lambda-1)
Suchaslambda=1
The=
M
Noverlapinabit
AndthetangentpointofellipticalandlinearDM.
Suchaslambdaindicates1
A:t=
|t|2orless
-2of2orlessorless
Solutiontolambda£[
5].
Thediscussionofparameters,parameters,andparametersare
discussed
Ithasalwaysbeenoneofthekeypointsanddifficultiesin
thecollegeentranceexamination
Especiallywhentherearemoreparameters
Theyoftenfeelthattheymaynotleadordonotknowwhatto
do
Thebasicsolutiontothiskindofproblemisthatwhenthere
aremorethantwoparameters
Thenon-mainparametersshouldbegraduallydissipation
Youendupwithtwointerdependentparameters
Andthenwe'regoingtoendupwiththemeaninequality
Orbysolvingthegeneralinequality
Orthroughmathematicalmeans,suchastrigonometricfunction
todeterminethescopeoftherequestedparameters.
Whatkindofproblemissuitablefor"anti-visitors"?Ifthe
problemisnotasdifficultasitis
Youdon'thavetobeasnake
Iftheproblemitselfisdifficult
Butthetopicofasingle
Thereisnosuchthingasamaster
Isnotgoingto.
so
Itissuitablefor“anti-visitors“problem
Itmustbethatthefrontismoredifficult
Outburstandexchangethemainlocation(forexample,depending
onaparameterequationorfunction)iseasiertocrackproblem.
lowcorrespondingtraining
1.PleasemakeA=asallintegernumberx.
Wehavethesamesolution
Forthevalueofmandn.
3.Thesolutionequationaboutx:x4-6x3-2(a-3)x2+2(3
+4a)x+2a+a2=0.
Youknowthatyouhavetherightsequence{an}
Al=1
AndSn=
Thesequenceofthegeneralterm.
5.Solvingequationsx3+(1+)x2-2=0.
lowreferenceanswer
1.ThePepsicenter
LetxforAservice.
A-1=whenA£Z
AlsohaveA1GZ.
Ifx+1=0
IsA=1Z£(x=1).
Ifx+1indicatesa0
Are:1=£a.z.thistherearetwopossible.
(1)=+1.X2-4x+2=0
X=2mm;Orx2-2x+4=0
Norealsolution
Yea.
(2)isthetruescoreofmolecular1.thex2-3x+3=1
X=1or2.
Sotherealnumberisxisequaltonegative1
one
2
ThecorrespondingintegerisA=1
3
4
2.
Let's
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物聯網技術概論 課件 第4章應用技術
- 江蘇省蘇錫常鎮四市高三教學情況調研語文試題講評分析
- 互聯網企業監督管理制度
- xx公司工程部管理制度
- 鄉鎮圖書館設備管理制度
- 制造業大型設備管理制度
- 公司員工公寓樓管理制度
- 施工現場進出管理制度
- 公司數據自動化管理制度
- 日常裝潢材料管理制度
- 2025年北方華創招聘筆試參考題庫含答案解析
- 期末綜合試題 2024-2025學年下期初中英語人教版七年級下冊(新教材)
- 2025年甘肅高考真題化學試題(解析版)
- 惡臭的測定作業指導書
- 中國政法大學《中國政治制度史》2023-2024學年第二學期期末試卷
- 2024年上海浦東新區公辦學校儲備教師教輔招聘真題
- 2025年高考歷史全國卷試題評析-教育部教育考試院
- 貴州省貴陽市2023?2024學年度第二學期期末監測試卷高一 數學試題(含解析)
- 公共組織績效評估-形考任務三(占10%)-國開(ZJ)-參考資料
- 2025年廣東高中學業水平合格性考試化學試卷試題(含答案解析)
- 康復醫學科治療技術操作規范2023版
評論
0/150
提交評論