




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省青島五校聯考2024屆中考數學最后沖刺模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算(﹣5)﹣(﹣3)的結果等于()A.﹣8B.8C.﹣2D.22.若二次函數的圖象與軸有兩個交點,坐標分別是(x1,0),(x2,0),且.圖象上有一點在軸下方,則下列判斷正確的是()A. B. C. D.3.一個多邊形的每個內角都等于120°,則這個多邊形的邊數為()A.4 B.5 C.6 D.74.2018年1月,“墨子號”量子衛星實現了距離達7600千米的洲際量子密鑰分發,這標志著“墨子號”具備了洲際量子保密通信的能力.數字7600用科學記數法表示為()A.0.76×104 B.7.6×103 C.7.6×104 D.76×1025.下列四張正方形硬紙片,剪去陰影部分后,如果沿虛線折疊,可以圍成一個封閉的長方體包裝盒的是()A. B. C. D.6.3的相反數是()A.﹣3 B.3 C. D.﹣7.如圖,點P是∠AOB內任意一點,OP=5cm,點M和點N分別是射線OA和射線OB上的動點,△PMN周長的最小值是5cm,則∠AOB的度數是().A. B. C. D.8.一個正比例函數的圖象過點(2,﹣3),它的表達式為()A. B. C. D.9.下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.10.已知拋物線y=x2+bx+c的對稱軸為x=2,若關于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍內有兩個相等的實數根,則c的取值范圍是(
)A.c=4B.﹣5<c≤4C.﹣5<c<3或c=4D.﹣5<c≤3或c=4二、填空題(共7小題,每小題3分,滿分21分)11.已知:正方形ABCD.求作:正方形ABCD的外接圓.作法:如圖,(1)分別連接AC,BD,交于點O;(2)以點O為圓心,OA長為半徑作⊙O,⊙O即為所求作的圓.請回答:該作圖的依據是__________________________________.12.如圖,已知點A(2,2)在雙曲線上,將線段OA沿x軸正方向平移,若平移后的線段O'A'與雙曲線的交點D恰為O'A'的中點,則平移距離OO'長為____.13.拋物線y=ax2+bx+c的頂點為D(-1,2),與x軸的一個交點A在點(-3,1)和(-2,1)之間,其部分圖象如圖,則以下結論:①b2-4ac<1;②當x>-1時y隨x增大而減小;③a+b+c<1;④若方程ax2+bx+c-m=1沒有實數根,則m>2;
⑤3a+c<1.其中,正確結論的序號是________________.14.因式分解:=15.如圖,定長弦CD在以AB為直徑的⊙O上滑動(點C、D與點A、B不重合),M是CD的中點,過點C作CP⊥AB于點P,若CD=3,AB=8,PM=l,則l的最大值是16.如圖,在△ABC中,AB=3+,∠B=45°,∠C=105°,點D、E、F分別在AC、BC、AB上,且四邊形ADEF為菱形,若點P是AE上一個動點,則PF+PB的最小值為_____.17.如圖,直線y=kx與雙曲線y=(x>0)交于點A(1,a),則k=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知一次函數y=kx+b的圖象與反比例函數y=8(1)求一次函數的解析式;(2)求ΔAOB的面積。19.(5分)如圖,矩形ABCD為臺球桌面,AD=260cm,AB=130cm,球目前在E點位置,AE=60cm.如果小丁瞄準BC邊上的點F將球打過去,經過反彈后,球剛好彈到D點位置.求BF的長.20.(8分)如圖,頂點為C的拋物線y=ax2+bx(a>0)經過點A和x軸正半軸上的點B,連接OC、OA、AB,已知OA=OB=2,∠AOB=120°.(1)求這條拋物線的表達式;(2)過點C作CE⊥OB,垂足為E,點P為y軸上的動點,若以O、C、P為頂點的三角形與△AOE相似,求點P的坐標;(3)若將(2)的線段OE繞點O逆時針旋轉得到OE′,旋轉角為α(0°<α<120°),連接E′A、E′B,求E′A+E′B的最小值.21.(10分)如圖1,二次函數y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側),與y軸的正半軸交于點C,頂點為D.(1)求頂點D的坐標(用含a的代數式表示);(2)若以AD為直徑的圓經過點C.①求拋物線的函數關系式;②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內某一點旋轉180°,得到△PMN(點P、M、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.22.(10分)為評估九年級學生的體育成績情況,某校九年級500名學生全部參加了“中考體育模擬考試”,隨機抽取了部分學生的測試成績作為樣本,并繪制出如下兩幅不完整的統計表和頻數分布直方圖:成績x分人數頻率25≤x<3040.0830≤x<3580.1635≤x<40a0.3240≤x<45bc45≤x<50100.2(1)求此次抽查了多少名學生的成績;(2)通過計算將頻數分布直方圖補充完整;(3)若測試成績不低于40分為優秀,請估計本次測試九年級學生中成績優秀的人數.23.(12分)某商場經營某種品牌的玩具,購進時的單價是30元,根據市場調查:在一段時間內,銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.不妨設該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結果填寫在表格中:銷售單價(元)x銷售量y(件)銷售玩具獲得利潤w(元)(2)在(1)問條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應定為多少元.在(1)問條件下,若玩具廠規定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?24.(14分)某制衣廠某車間計劃用10天加工一批出口童裝和成人裝共360件,該車間的加工能力是:每天能單獨加工童裝45件或成人裝30件.(1)該車間應安排幾天加工童裝,幾天加工成人裝,才能如期完成任務;(2)若加工童裝一件可獲利80元,加工成人裝一件可獲利120元,那么該車間加工完這批服裝后,共可獲利多少元.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】分析:減去一個數,等于加上這個數的相反數.依此計算即可求解.詳解:(-5)-(-3)=-1.故選:C.點睛:考查了有理數的減法,方法指引:①在進行減法運算時,首先弄清減數的符號;②將有理數轉化為加法時,要同時改變兩個符號:一是運算符號(減號變加號);二是減數的性質符號(減數變相反數).2、D【解析】
根據拋物線與x軸有兩個不同的交點,根的判別式△>0,再分a>0和a<0兩種情況對C、D選項討論即可得解.【詳解】A、二次函數y=ax2+bx+c(a≠0)的圖象與x軸有兩個交點無法確定a的正負情況,故本選項錯誤;B、∵x1<x2,∴△=b2-4ac>0,故本選項錯誤;C、若a>0,則x1<x0<x2,若a<0,則x0<x1<x2或x1<x2<x0,故本選項錯誤;D、若a>0,則x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,則(x0-x1)與(x0-x2)同號,∴a(x0-x1)(x0-x2)<0,綜上所述,a(x0-x1)(x0-x2)<0正確,故本選項正確.3、C【解析】試題解析:∵多邊形的每一個內角都等于120°,∴多邊形的每一個外角都等于180°-120°=10°,∴邊數n=310°÷10°=1.故選C.考點:多邊形內角與外角.4、B【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:7600=7.6×103,故選B.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.5、C【解析】A、剪去陰影部分后,組成無蓋的正方體,故此選項不合題意;B、剪去陰影部分后,無法組成長方體,故此選項不合題意;C、剪去陰影部分后,能組成長方體,故此選項正確;D、剪去陰影部分后,組成無蓋的正方體,故此選項不合題意;故選C.6、A【解析】試題分析:根據相反數的概念知:1的相反數是﹣1.故選A.【考點】相反數.7、B【解析】試題分析:作點P關于OA對稱的點P3,作點P關于OB對稱的點P3,連接P3P3,與OA交于點M,與OB交于點N,此時△PMN的周長最小.由線段垂直平分線性質可得出△PMN的周長就是P3P3的長,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等邊三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故選B.考點:3.線段垂直平分線性質;3.軸對稱作圖.8、A【解析】
利用待定系數法即可求解.【詳解】設函數的解析式是y=kx,根據題意得:2k=﹣3,解得:k=.∴函數的解析式是:.故選A.9、D【解析】
根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、不是軸對稱圖形,是中心對稱圖形,故此選項不合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;C、不是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;D、是軸對稱圖形,是中心對稱圖形,故此選項符合題意;故選D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.10、D【解析】解:由對稱軸x=2可知:b=﹣4,∴拋物線y=x2﹣4x+c,令x=﹣1時,y=c+5,x=3時,y=c﹣3,關于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍有實數根,當△=0時,即c=4,此時x=2,滿足題意.當△>0時,(c+5)(c﹣3)≤0,∴﹣5≤c≤3,當c=﹣5時,此時方程為:﹣x2+4x+5=0,解得:x=﹣1或x=5不滿足題意,當c=3時,此時方程為:﹣x2+4x﹣3=0,解得:x=1或x=3此時滿足題意,故﹣5<c≤3或c=4,故選D.點睛:本題主要考查二次函數與一元二次方程的關系.理解二次函數與一元二次方程之間的關系是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、正方形的對角線相等且互相垂直平分;點到圓心的距離等于圓的半徑的點在這個圓上;四邊形的四個頂點在同一個圓上,這個圓叫四邊形的外接圓.【解析】
利用正方形的性質得到OA=OB=OC=OD,則以點O為圓心,OA長為半徑作⊙O,點B、C、D都在⊙O上,從而得到⊙O為正方形的外接圓.【詳解】∵四邊形ABCD為正方形,∴OA=OB=OC=OD,∴⊙O為正方形的外接圓.故答案為正方形的對角線相等且互相垂直平分;點到圓心的距離等于圓的半徑的點在這個圓上;四邊形的四個頂點在同一個圓上,這個圓叫四邊形的外接圓.【點睛】本題考查了作圖﹣復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.12、1.【解析】
直接利用平移的性質以及反比例函數圖象上點的坐標性質得出D點坐標進而得出答案.【詳解】∵點A(2,2)在雙曲線上,∴k=4,∵平移后的線段O'A'與雙曲線的交點D恰為O'A'的中點,∴D點縱坐標為:1,∴DE=1,O′E=1,∴D點橫坐標為:x==4,∴OO′=1,故答案為1.【點睛】本題考查了反比例函數圖象上的性質,正確得出D點坐標是解題關鍵.13、②③④⑤【解析】試題解析:∵二次函數與x軸有兩個交點,∴b2-4ac>1,故①錯誤,觀察圖象可知:當x>-1時,y隨x增大而減小,故②正確,∵拋物線與x軸的另一個交點為在(1,1)和(1,1)之間,∴x=1時,y=a+b+c<1,故③正確,∵當m>2時,拋物線與直線y=m沒有交點,∴方程ax2+bx+c-m=1沒有實數根,故④正確,∵對稱軸x=-1=-,∴b=2a,∵a+b+c<1,∴3a+c<1,故⑤正確,故答案為②③④⑤.14、﹣3(x﹣y)1【解析】解:﹣3x1+6xy﹣3y1=﹣3(x1+y1﹣1xy)=﹣3(x﹣y)1.故答案為:﹣3(x﹣y)1.點睛:本題考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式進行二次分解,注意分解要徹底.15、4【解析】
當CD∥AB時,PM長最大,連接OM,OC,得出矩形CPOM,推出PM=OC,求出OC長即可.【詳解】當CD∥AB時,PM長最大,連接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M為CD中點,OM過O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四邊形CPOM是矩形,∴PM=OC,∵⊙O直徑AB=8,∴半徑OC=4,即PM=4.【點睛】本題考查矩形的判定和性質,垂徑定理,平行線的性質,此類問題是初中數學的重點和難點,在中考中極為常見,一般以壓軸題形式出現,難度較大.16、【解析】
如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四邊形ADEF是菱形,推出F,D關于直線AE對稱,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是線段BD的長.【詳解】如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.∵四邊形ADEF是菱形,∴F,D關于直線AE對稱,∴PF=PD,∴PF+PB=PA+PB,∵PD+PB≥BD,∴PF+PB的最小值是線段BD的長,∵∠CAB=180°-105°-45°=30°,設AF=EF=AD=x,則DH=EG=x,FG=x,∵∠EGB=45°,EG⊥BG,∴EG=BG=x,∴x+x+x=3+,∴x=2,∴DH=1,BH=3,∴BD==,∴PF+PB的最小值為,故答案為.【點睛】本題考查軸對稱-最短問題,菱形的性質等知識,解題的關鍵是學會用轉化的思想思考問題,學會利用軸對稱解決最短問題.17、1【解析】解:∵直線y=kx與雙曲線y=(x>0)交于點A(1,a),∴a=1,k=1.故答案為1.三、解答題(共7小題,滿分69分)18、(1)y=x+2;(2)6.【解析】
(1)由反比例函數解析式根據點A的橫坐標是2,點B的縱坐標是-2可以求得點A、點B的坐標,然后根據待定系數法即可求得一次函數的解析式;(2)令直線AB與y軸交點為D,求出點D坐標,然后根據三角形面積公式進行求解即可得.【詳解】(1)當x=2時,y=當y=-2時,-2=8x所以點A(2,4),點B(-4,-2),將A,B兩點分別代入一次函數解析式,得2k+b=4-4k+b=-2解得:k=1b=2所以,一次函數解析式為y=(2)令直線AB與y軸交點為D,則OD=b=2,SΔAOB【點睛】本題考查了反比例函數與一次函數的交點問題,熟練掌握待定系數法是解本題的關鍵.19、BF的長度是1cm.【解析】
利用“兩角法”證得△BEF∽△CDF,利用相似三角形的對應邊成比例來求線段CF的長度.【詳解】解:如圖,在矩形ABCD中:∠DFC=∠EFB,∠EBF=∠FCD=90°,∴△BEF∽△CDF;∴=,又∵AD=BC=260cm,AB=CD=130cm,AE=60cm∴BE=70cm,CD=130cm,BC=260cm,CF=(260-BF)cm∴=,解得:BF=1.即:BF的長度是1cm.【點睛】本題主要考查相似三角形的判定和性質,關鍵要掌握:有兩角對應相等的兩三角形相似;兩三角形相似,對應邊的比相等.20、(1)y=x2﹣x;(2)點P坐標為(0,)或(0,);(3).【解析】
(1)根據AO=OB=2,∠AOB=120°,求出A點坐標,以及B點坐標,進而利用待定系數法求二次函數解析式;(2)∠EOC=30°,由OA=2OE,OC=,推出當OP=OC或OP′=2OC時,△POC與△AOE相似;(3)如圖,取Q(,0).連接AQ,QE′.由△OE′Q∽△OBE′,推出,推出E′Q=BE′,推出AE′+BE′=AE′+QE′,由AE′+E′Q≥AQ,推出E′A+E′B的最小值就是線段AQ的長.【詳解】(1)過點A作AH⊥x軸于點H,∵AO=OB=2,∠AOB=120°,∴∠AOH=60°,∴OH=1,AH=,∴A點坐標為:(-1,),B點坐標為:(2,0),將兩點代入y=ax2+bx得:,解得:,∴拋物線的表達式為:y=x2-x;(2)如圖,∵C(1,-),∴tan∠EOC=,∴∠EOC=30°,∴∠POC=90°+30°=120°,∵∠AOE=120°,∴∠AOE=∠POC=120°,∵OA=2OE,OC=,∴當OP=OC或OP′=2OC時,△POC與△AOE相似,∴OP=,OP′=,∴點P坐標為(0,)或(0,).(3)如圖,取Q(,0).連接AQ,QE′.∵,∠QOE′=∠BOE′,∴△OE′Q∽△OBE′,∴,∴E′Q=BE′,∴AE′+BE′=AE′+QE′,∵AE′+E′Q≥AQ,∴E′A+E′B的最小值就是線段AQ的長,最小值為.【點睛】本題考查二次函數綜合題、解直角三角形、相似三角形的判定和性質、兩點之間線段最短等知識,解題的關鍵是學會由分類討論的思想思考問題,學會構造相似三角形解決最短問題,屬于中考壓軸題.21、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③點Q的坐標為(1,﹣4+2)或(1,﹣4﹣2).【解析】分析:(1)將二次函數的解析式進行配方即可得到頂點D的坐標.(2)①以AD為直徑的圓經過點C,即點C在以AD為直徑的圓的圓周上,依據圓周角定理不難得出△ACD是個直角三角形,且∠ACD=90°,A點坐標可得,而C、D的坐標可由a表達出來,在得出AC、CD、AD的長度表達式后,依據勾股定理列等式即可求出a的值.②將△OBE繞平面內某一點旋轉180°得到△PMN,說明了PM正好和x軸平行,且PM=OB=1,所以求M、N的坐標關鍵是求出點M的坐標;首先根據①的函數解析式設出M點的坐標,然后根據題干條件:BF=2MF作為等量關系進行解答即可.③設⊙Q與直線CD的切點為G,連接QG,由C、D兩點的坐標不難判斷出∠CDQ=45°,那么△QGD為等腰直角三角形,即QD2=2QG2=2QB2,設出點Q的坐標,然后用Q點縱坐標表達出QD、QB的長,根據上面的等式列方程即可求出點Q的坐標.詳解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD為直徑的圓經過點C,∴△ACD為直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),則:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化簡,得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴拋物線的解析式:y=﹣x2+2x+3,D(1,4).∵將△OBE繞平面內某一點旋轉180°得到△PMN,∴PM∥x軸,且PM=OB=1;設M(x,﹣x2+2x+3),則OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵BF=2MF,∴x+1=2(﹣x2+2x+3),化簡,得:2x2﹣3x﹣5=0解得:x1=﹣1(舍去)、x2=.∴M(,)、N(,).③設⊙Q與直線CD的切點為G,連接QG,過C作CH⊥QD于H,如下圖:∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;設Q(1,b),則QD=4﹣b,QG2=QB2=b2+4;得:(4﹣b)2=2(b2+4),化簡,得:b2+8b﹣8=0,解得:b=﹣4±2;即點Q的坐標為(1,)或(1,).點睛:此題主要考查了二次函數解析式的確定、旋轉圖形的性質、圓周角定理以及直線和圓的位置關系等重要知識點;后兩個小題較難,最后一題中,通過構建等腰直角三角形找出QD和⊙Q半徑間的數量關系是解題題目的關鍵.22、(1)50;(2)詳見解析;(3)220.【解析】
(1)利用1組的人數除以1組的頻率可求此次抽查了多少名學生的成績;(2)根據總數乘以3組的頻率可求a,用50減去其它各組的頻數即可求得b的值,再用1減去其它各組的頻率即可求得c的值,即可把頻數分布直方圖補充完整;(3)先得到成績優秀的頻率,再乘以500即可求解.【詳解】解:(1)4÷0.08=5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業互聯網平臺網絡安全態勢感知技術安全態勢感知與安全防護技術創新報告2025
- 2025年六盤水市重點中學八年級英語第二學期期中復習檢測模擬試題含答案
- 制造業數字化轉型數據治理策略與能源管理的優化報告
- 2025年元宇宙社交平臺隱私保護與用戶體驗研究報告
- 社交媒體輿情監測與2025年危機公關技術應用研究指南與實踐案例分析指南報告001
- 2025年單身經濟下小型家電市場消費者購買偏好研究報告
- 2025年醫藥行業市場準入政策與監管趨勢報告
- 2025年醫藥企業研發外包(CRO)與臨床試驗結果轉化報告
- 2025年短視頻平臺內容監管與網絡素養提升策略報告
- 2025年醫藥流通行業供應鏈優化與成本控制中的供應鏈協同效應提升策略報告
- 校長在2025暑假前期末教師大會上的講話:靜水深流腳踏實地
- 2025春季學期國開電大本科《理工英語3》一平臺在線形考綜合測試(形考任務)試題及答案
- 新22J01 工程做法圖集
- 2024秋期國家開放大學本科《經濟學(本)》一平臺在線形考(形考任務1至6)試題及答案
- 2022-2023學年安徽省阜陽市高一下學期期末教學質量統測數學試卷(解析版)
- 一二年級看圖說話寫話:過河 教學課件
- 售后服務管理制度與工作流程
- 消防改造工程技術標書模板
- 磷化膜質量評定項目與方法
- 貸款申請表(標準模版)
- 合理應用喹諾酮類抗菌藥物專家共識精品課件
評論
0/150
提交評論