




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
黑龍江省齊齊哈爾市訥河市市級(jí)名校2024屆初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖所示,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為()A.115° B.120° C.125° D.130°2.如圖,等邊△ABC的邊長(zhǎng)為4,點(diǎn)D,E分別是BC,AC的中點(diǎn),動(dòng)點(diǎn)M從點(diǎn)A向點(diǎn)B勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N沿B﹣D﹣E勻速運(yùn)動(dòng),點(diǎn)M,N同時(shí)出發(fā)且運(yùn)動(dòng)速度相同,點(diǎn)M到點(diǎn)B時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)M走過(guò)的路程為x,△AMN的面積為y,能大致刻畫y與x的函數(shù)關(guān)系的圖象是()A. B.C. D.3.將二次函數(shù)的圖象先向左平移1個(gè)單位,再向下平移2個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)表達(dá)式是()A. B.C. D.4.在同一坐標(biāo)系中,反比例函數(shù)y=與二次函數(shù)y=kx2+k(k≠0)的圖象可能為()A. B.C. D.5.若,則x-y的正確結(jié)果是()A.-1 B.1 C.-5 D.56.關(guān)于二次函數(shù),下列說(shuō)法正確的是()A.圖像與軸的交點(diǎn)坐標(biāo)為 B.圖像的對(duì)稱軸在軸的右側(cè)C.當(dāng)時(shí),的值隨值的增大而減小 D.的最小值為-37.計(jì)算的結(jié)果是()A. B. C. D.18.已知3a﹣2b=1,則代數(shù)式5﹣6a+4b的值是()A.4B.3C.﹣1D.﹣39.﹣18的倒數(shù)是()A.18 B.﹣18 C.- D.10.平面直角坐標(biāo)系內(nèi)一點(diǎn)關(guān)于原點(diǎn)對(duì)稱點(diǎn)的坐標(biāo)是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.小剛家、公交車站、學(xué)校在一條筆直的公路旁(小剛家、學(xué)校到這條公路的距離忽略不計(jì)).一天,小剛從家出發(fā)去上學(xué),沿這條公路步行到公交站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小剛下車時(shí)發(fā)現(xiàn)還有4分鐘上課,于是他沿著這條公路跑步趕到學(xué)校(上、下車時(shí)間忽略不計(jì)),小剛與學(xué)校的距離s(單位:米)與他所用的時(shí)間t(單位:分鐘)之間的函數(shù)關(guān)系如圖所示.已知小剛從家出發(fā)7分鐘時(shí)與家的距離是1200米,從上公交車到他到達(dá)學(xué)校共用10分鐘.下列說(shuō)法:①公交車的速度為400米/分鐘;②小剛從家出發(fā)5分鐘時(shí)乘上公交車;③小剛下公交車后跑向?qū)W校的速度是100米/分鐘;④小剛上課遲到了1分鐘.其中正確的序號(hào)是_____.12.如圖,已知⊙O是△ABD的外接圓,AB是⊙O的直徑,CD是⊙O的弦,∠ABD=58°,則∠BCD的度數(shù)是_____.13.如圖,折疊矩形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周長(zhǎng)_____________cm.14.因式分解:16a3﹣4a=_____.15.在形狀為等腰三角形、圓、矩形、菱形、直角梯形的5張紙片中隨機(jī)抽取一張,抽到中心對(duì)稱圖形的概率是________.16.計(jì)算:(π﹣3)0﹣2-1=_____.17.同時(shí)拋擲兩枚質(zhì)地均勻的骰子,則事件“兩枚骰子的點(diǎn)數(shù)和小于8且為偶數(shù)”的概率是.三、解答題(共7小題,滿分69分)18.(10分)計(jì)算:(π﹣3.14)0+|﹣1|﹣2sin45°+(﹣1)1.19.(5分)如圖,甲、乙兩座建筑物的水平距離為,從甲的頂部處測(cè)得乙的頂部處的俯角為,測(cè)得底部處的俯角為,求甲、乙建筑物的高度和(結(jié)果取整數(shù)).參考數(shù)據(jù):,.20.(8分)平面直角坐標(biāo)系xOy(如圖),拋物線y=﹣x2+2mx+3m2(m>0)與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D,對(duì)稱軸為直線l,過(guò)點(diǎn)C作直線l的垂線,垂足為點(diǎn)E,聯(lián)結(jié)DC、BC.(1)當(dāng)點(diǎn)C(0,3)時(shí),①求這條拋物線的表達(dá)式和頂點(diǎn)坐標(biāo);②求證:∠DCE=∠BCE;(2)當(dāng)CB平分∠DCO時(shí),求m的值.21.(10分)如圖,在平面直角坐標(biāo)系xOy中,將拋物線y=x2平移,使平移后的拋物線經(jīng)過(guò)點(diǎn)A(–3,0)、B(1,0).(1)求平移后的拋物線的表達(dá)式.(2)設(shè)平移后的拋物線交y軸于點(diǎn)C,在平移后的拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)P,當(dāng)BP與CP之和最小時(shí),P點(diǎn)坐標(biāo)是多少?(3)若y=x2與平移后的拋物線對(duì)稱軸交于D點(diǎn),那么,在平移后的拋物線的對(duì)稱軸上,是否存在一點(diǎn)M,使得以M、O、D為頂點(diǎn)的三角形△BOD相似?若存在,求點(diǎn)M坐標(biāo);若不存在,說(shuō)明理由.22.(10分)如圖,正方形OABC的面積為9,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C上y軸上,點(diǎn)B在反比例函數(shù)y=(k>0,x>0)的圖象上,點(diǎn)E從原點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向x軸正方向運(yùn)動(dòng),過(guò)點(diǎn)E作x的垂線,交反比例函數(shù)y=(k>0,x>0)的圖象于點(diǎn)P,過(guò)點(diǎn)P作PF⊥y軸于點(diǎn)F;記矩形OEPF和正方形OABC不重合部分的面積為S,點(diǎn)E的運(yùn)動(dòng)時(shí)間為t秒.(1)求該反比例函數(shù)的解析式.(2)求S與t的函數(shù)關(guān)系式;并求當(dāng)S=時(shí),對(duì)應(yīng)的t值.(3)在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,是否存在一個(gè)t值,使△FBO為等腰三角形?若有,有幾個(gè),寫出t值.23.(12分)如圖,直線與雙曲線相交于、兩點(diǎn).(1),點(diǎn)坐標(biāo)為.(2)在軸上找一點(diǎn),在軸上找一點(diǎn),使的值最小,求出點(diǎn)兩點(diǎn)坐標(biāo)24.(14分)如圖,已知AB為⊙O的直徑,AC是⊙O的弦,D是弧BC的中點(diǎn),過(guò)點(diǎn)D作⊙O的切線,分別交AC、AB的延長(zhǎng)線于點(diǎn)E和點(diǎn)F,連接CD、BD.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長(zhǎng).
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】分析:由已知條件易得∠AEB=70°,由此可得∠DEB=110°,結(jié)合折疊的性質(zhì)可得∠DEF=55°,則由AD∥BC可得∠EFC=125°,再由折疊的性質(zhì)即可得到∠EFC′=125°.詳解:∵在△ABE中,∠A=90°,∠ABE=20°,∴∠AEB=70°,∴∠DEB=180°-70°=110°,∵點(diǎn)D沿EF折疊后與點(diǎn)B重合,∴∠DEF=∠BEF=∠DEB=55°,∵在矩形ABCD中,AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=180°-55°=125°,∴由折疊的性質(zhì)可得∠EFC′=∠EFC=125°.故選C.點(diǎn)睛:這是一道有關(guān)矩形折疊的問(wèn)題,熟悉“矩形的四個(gè)內(nèi)角都是直角”和“折疊的性質(zhì)”是正確解答本題的關(guān)鍵.2、A【解析】
根據(jù)題意,將運(yùn)動(dòng)過(guò)程分成兩段.分段討論求出解析式即可.【詳解】∵BD=2,∠B=60°,∴點(diǎn)D到AB距離為,當(dāng)0≤x≤2時(shí),y=;當(dāng)2≤x≤4時(shí),y=.根據(jù)函數(shù)解析式,A符合條件.故選A.【點(diǎn)睛】本題為動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象,解答關(guān)鍵是找到動(dòng)點(diǎn)到達(dá)臨界點(diǎn)前后的一般圖形,分類討論,求出函數(shù)關(guān)系式.3、B【解析】
拋物線平移不改變a的值,由拋物線的頂點(diǎn)坐標(biāo)即可得出結(jié)果.【詳解】解:原拋物線的頂點(diǎn)為(0,0),向左平移1個(gè)單位,再向下平移1個(gè)單位,那么新拋物線的頂點(diǎn)為(-1,-1),
可設(shè)新拋物線的解析式為:y=(x-h)1+k,
代入得:y=(x+1)1-1.
∴所得圖象的解析式為:y=(x+1)1-1;
故選:B.【點(diǎn)睛】本題考查二次函數(shù)圖象的平移規(guī)律;解決本題的關(guān)鍵是得到新拋物線的頂點(diǎn)坐標(biāo).4、D【解析】
根據(jù)k>0,k<0,結(jié)合兩個(gè)函數(shù)的圖象及其性質(zhì)分類討論.【詳解】分兩種情況討論:①當(dāng)k<0時(shí),反比例函數(shù)y=,在二、四象限,而二次函數(shù)y=kx2+k開口向上下與y軸交點(diǎn)在原點(diǎn)下方,D符合;②當(dāng)k>0時(shí),反比例函數(shù)y=,在一、三象限,而二次函數(shù)y=kx2+k開口向上,與y軸交點(diǎn)在原點(diǎn)上方,都不符.分析可得:它們?cè)谕恢苯亲鴺?biāo)系中的圖象大致是D.故選D.【點(diǎn)睛】本題主要考查二次函數(shù)、反比例函數(shù)的圖象特點(diǎn).5、A【解析】由題意,得
x-2=0,1-y=0,
解得x=2,y=1.
x-y=2-1=-1,
故選:A.6、D【解析】分析:根據(jù)題目中的函數(shù)解析式可以判斷各個(gè)選項(xiàng)中的結(jié)論是否成立,從而可以解答本題.詳解:∵y=2x2+4x-1=2(x+1)2-3,∴當(dāng)x=0時(shí),y=-1,故選項(xiàng)A錯(cuò)誤,該函數(shù)的對(duì)稱軸是直線x=-1,故選項(xiàng)B錯(cuò)誤,當(dāng)x<-1時(shí),y隨x的增大而減小,故選項(xiàng)C錯(cuò)誤,當(dāng)x=-1時(shí),y取得最小值,此時(shí)y=-3,故選項(xiàng)D正確,故選D.點(diǎn)睛:本題考查二次函數(shù)的性質(zhì)、二次函數(shù)的最值,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.7、D【解析】
根據(jù)同分母分式的加法法則計(jì)算可得結(jié)論.【詳解】===1.故選D.【點(diǎn)睛】本題考查了分式的加減法,解題的關(guān)鍵是掌握同分母分式的加減運(yùn)算法則.8、B【解析】
先變形,再整體代入,即可求出答案.【詳解】∵3a﹣2b=1,∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,故選:B.【點(diǎn)睛】本題考查了求代數(shù)式的值,能夠整體代入是解此題的關(guān)鍵.9、C【解析】
根據(jù)乘積為1的兩個(gè)數(shù)互為倒數(shù),可得一個(gè)數(shù)的倒數(shù).【詳解】∵-18=1,∴﹣18的倒數(shù)是,故選C.【點(diǎn)睛】本題考查了倒數(shù),分子分母交換位置是求一個(gè)數(shù)的倒數(shù)的關(guān)鍵.10、D【解析】
根據(jù)“平面直角坐標(biāo)系中任意一點(diǎn)P(x,y),關(guān)于原點(diǎn)的對(duì)稱點(diǎn)是(-x,-y),即關(guān)于原點(diǎn)的對(duì)稱點(diǎn),橫縱坐標(biāo)都變成相反數(shù)”解答.【詳解】解:根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特點(diǎn),∴點(diǎn)A(-2,3)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是(2,-3),故選D.【點(diǎn)睛】本題主要考查點(diǎn)關(guān)于原點(diǎn)對(duì)稱的特征,解決本題的關(guān)鍵是要熟練掌握點(diǎn)關(guān)于原點(diǎn)對(duì)稱的特征.二、填空題(共7小題,每小題3分,滿分21分)11、①②③【解析】
由公交車在7至12分鐘時(shí)間內(nèi)行駛的路程可求解其行駛速度,再由求解的速度可知公交車行駛的時(shí)間,進(jìn)而可知小剛上公交車的時(shí)間;由上公交車到他到達(dá)學(xué)校共用10分鐘以及公交車行駛時(shí)間可知小剛跑步時(shí)間,進(jìn)而判斷其是否遲到,再由圖可知其跑步距離,可求解小剛下公交車后跑向?qū)W校的速度.【詳解】解:公交車7至12分鐘時(shí)間內(nèi)行駛的路程為3500-1200-300=2000m,則其速度為2000÷5=400米/分鐘,故①正確;由圖可知,7分鐘時(shí),公交車行駛的距離為1200-400=800m,則公交車行駛的時(shí)間為800÷400=2min,則小剛從家出發(fā)7-2=5分鐘時(shí)乘上公交車,故②正確;公交車一共行駛了2800÷400=7分鐘,則小剛從下公交車到學(xué)校一共花了10-7=3分鐘<4分鐘,故④錯(cuò)誤,再由圖可知小明跑步時(shí)間為300÷3=100米/分鐘,故③正確.故正確的序號(hào)是:①②③.【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用.12、32°【解析】
根據(jù)直徑所對(duì)的圓周角是直角得到∠ADB=90°,求出∠A的度數(shù),根據(jù)圓周角定理解答即可.【詳解】∵AB是⊙O的直徑,
∴∠ADB=90°,
∵∠ABD=58°,
∴∠A=32°,
∴∠BCD=32°,
故答案為32°.13、36.【解析】試題分析:∵△AFE和△ADE關(guān)于AE對(duì)稱,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC==,∴可設(shè)EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC=8x.∵∠EFC+∠AFB=90°,∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周長(zhǎng)=8×2+10×2=36.考點(diǎn):折疊的性質(zhì);矩形的性質(zhì);銳角三角函數(shù);勾股定理.14、4a(2a+1)(2a﹣1)【解析】
首先提取公因式,再利用平方差公式分解即可.【詳解】原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),故答案為4a(2a+1)(2a﹣1)【點(diǎn)睛】本題考查了提公因式法與公式法的綜合運(yùn)用,解題的關(guān)鍵是熟練掌握因式分解的方法.15、【解析】
在形狀為等腰三角形、圓、矩形、菱形、直角梯形的5張紙片中,中心對(duì)稱圖案的卡片是圓、矩形、菱形,直接利用概率公式求解即可求得答案.【詳解】∵在:等腰三角形、圓、矩形、菱形和直角梯形中屬于中心對(duì)稱圖形的有:圓、矩形和菱形3種,∴從這5張紙片中隨機(jī)抽取一張,抽到中心對(duì)稱圖形的概率為:.故答案為.16、12【解析】
分別利用零指數(shù)冪a0=1(a≠0),負(fù)指數(shù)冪a-p=1a【詳解】解:(π﹣3)0﹣2-1=1-12=1故答案為:12【點(diǎn)睛】本題考查了零指數(shù)冪和負(fù)整數(shù)指數(shù)冪的運(yùn)算,掌握運(yùn)算法則是解題關(guān)鍵.17、.【解析】試題分析:畫樹狀圖為:共有36種等可能的結(jié)果數(shù),其中“兩枚骰子的點(diǎn)數(shù)和小于8且為偶數(shù)”的結(jié)果數(shù)為9,所以“兩枚骰子的點(diǎn)數(shù)和小于8且為偶數(shù)”的概率==.故答案為.考點(diǎn):列表法與樹狀圖法.三、解答題(共7小題,滿分69分)18、【解析】
直接利用絕對(duì)值的性質(zhì)以及特殊角的三角函數(shù)值、負(fù)整數(shù)指數(shù)冪的性質(zhì)化簡(jiǎn),進(jìn)而求出答案.【詳解】原式.【點(diǎn)睛】考核知識(shí)點(diǎn):三角函數(shù)混合運(yùn)算.正確計(jì)算是關(guān)鍵.19、甲建筑物的高度約為,乙建筑物的高度約為.【解析】分析:首先分析圖形:根據(jù)題意構(gòu)造直角三角形;本題涉及兩個(gè)直角三角形,應(yīng)利用其公共邊構(gòu)造關(guān)系式,進(jìn)而可求出答案.詳解:如圖,過(guò)點(diǎn)作,垂足為.則.由題意可知,,,,,.可得四邊形為矩形.∴,.在中,,∴.在中,,∴.∴.∴.答:甲建筑物的高度約為,乙建筑物的高度約為.點(diǎn)睛:本題考查解直角三角形的應(yīng)用--仰角俯角問(wèn)題,首先構(gòu)造直角三角形,再借助角邊關(guān)系、三角函數(shù)的定義解題,難度一般.20、(1)y=﹣x2+2x+3;D(1,4);(2)證明見(jiàn)解析;(3)m=;【解析】
(1)①把C點(diǎn)坐標(biāo)代入y=﹣x2+2mx+3m2可求出m的值,從而得到拋物線解析式,然后把一般式配成頂點(diǎn)式得到D點(diǎn)坐標(biāo);②如圖1,先解方程﹣x2+2x+3=0得B(3,0),則可判斷△OCB為等腰直角三角形得到∠OBC=45°,再證明△CDE為等腰直角三角形得到∠DCE=45°,從而得到∠DCE=∠BCE;(2)拋物線的對(duì)稱軸交x軸于F點(diǎn),交直線BC于G點(diǎn),如圖2,把一般式配成頂點(diǎn)式得到拋物線的對(duì)稱軸為直線x=m,頂點(diǎn)D的坐標(biāo)為(m,4m2),通過(guò)解方程﹣x2+2mx+3m2=0得B(3m,0),同時(shí)確定C(0,3m2),再利用相似比表示出GF=2m2,則DG=2m2,接著證明∠DCG=∠DGC得到DC=DG,所以m2+(4m2﹣3m2)2=4m4,然后解方程可求出m.【詳解】(1)①把C(0,3)代入y=﹣x2+2mx+3m2得3m2=3,解得m1=1,m2=﹣1(舍去),∴拋物線解析式為y=﹣x2+2x+3;∵∴頂點(diǎn)D為(1,4);②證明:如圖1,當(dāng)y=0時(shí),﹣x2+2x+3=0,解得x1=﹣1,x2=3,則B(3,0),∵OC=OB,∴△OCB為等腰直角三角形,∴∠OBC=45°,∵CE⊥直線x=1,∴∠BCE=45°,∵DE=1,CE=1,∴△CDE為等腰直角三角形,∴∠DCE=45°,∴∠DCE=∠BCE;(2)解:拋物線的對(duì)稱軸交x軸于F點(diǎn),交直線BC于G點(diǎn),如圖2,∴拋物線的對(duì)稱軸為直線x=m,頂點(diǎn)D的坐標(biāo)為(m,4m2),當(dāng)y=0時(shí),﹣x2+2mx+3m2=0,解得x1=﹣m,x2=3m,則B(3m,0),當(dāng)x=0時(shí),y=﹣x2+2mx+3m2=3m2,則C(0,3m2),∵GF∥OC,∴即解得GF=2m2,∴DG=4m2﹣2m2=2m2,∵CB平分∠DCO,∴∠DCB=∠OCB,∵∠OCB=∠DGC,∴∠DCG=∠DGC,∴DC=DG,即m2+(4m2﹣3m2)2=4m4,∴而m>0,∴【點(diǎn)睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、二次函數(shù)的性質(zhì)和等腰三角形的性質(zhì);會(huì)利用待定系數(shù)法求函數(shù)解析式;靈活應(yīng)用等腰直角三角形的性質(zhì)進(jìn)行幾何計(jì)算;理解坐標(biāo)與圖形性質(zhì),記住兩點(diǎn)間的距離公式.21、(1)y=x2+2x﹣3;(2)點(diǎn)P坐標(biāo)為(﹣1,﹣2);(3)點(diǎn)M坐標(biāo)為(﹣1,3)或(﹣1,2).【解析】
(1)設(shè)平移后拋物線的表達(dá)式為y=a(x+3)(x-1).由題意可知平后拋物線的二次項(xiàng)系數(shù)與原拋物線的二次項(xiàng)系數(shù)相同,從而可求得a的值,于是可求得平移后拋物線的表達(dá)式;(2)先根據(jù)平移后拋物線解析式求得其對(duì)稱軸,從而得出點(diǎn)C關(guān)于對(duì)稱軸的對(duì)稱點(diǎn)C′坐標(biāo),連接BC′,與對(duì)稱軸交點(diǎn)即為所求點(diǎn)P,再求得直線BC′解析式,聯(lián)立方程組求解可得;(3)先求得點(diǎn)D的坐標(biāo),由點(diǎn)O、B、E、D的坐標(biāo)可求得OB、OE、DE、BD的長(zhǎng),從而可得到△EDO為等腰三角直角三角形,從而可得到∠MDO=∠BOD=135°,故此當(dāng)或時(shí),以M、O、D為頂點(diǎn)的三角形與△BOD相似.由比例式可求得MD的長(zhǎng),于是可求得點(diǎn)M的坐標(biāo).【詳解】(1)設(shè)平移后拋物線的表達(dá)式為y=a(x+3)(x﹣1),∵由平移的性質(zhì)可知原拋物線與平移后拋物線的開口大小與方向都相同,∴平移后拋物線的二次項(xiàng)系數(shù)與原拋物線的二次項(xiàng)系數(shù)相同,∴平移后拋物線的二次項(xiàng)系數(shù)為1,即a=1,∴平移后拋物線的表達(dá)式為y=(x+3)(x﹣1),整理得:y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對(duì)稱軸為直線x=﹣1,與y軸的交點(diǎn)C(0,﹣3),則點(diǎn)C關(guān)于直線x=﹣1的對(duì)稱點(diǎn)C′(﹣2,﹣3),如圖1,連接B,C′,與直線x=﹣1的交點(diǎn)即為所求點(diǎn)P,由B(1,0),C′(﹣2,﹣3)可得直線BC′解析式為y=x﹣1,則,解得,所以點(diǎn)P坐標(biāo)為(﹣1,﹣2);(3)如圖2,由得,即D(﹣1,1),則DE=OD=1,∴△DOE為等腰直角三角形,∴∠DOE=∠ODE=45°,∠BOD=135°,OD=,∵BO=1,∴BD=,∵∠BOD=135°,∴點(diǎn)M只能在點(diǎn)D上方,∵∠BOD=∠ODM=135°,∴當(dāng)或時(shí),以M、O、D為頂點(diǎn)的三角形△BOD相似,①若,則,解得DM=2,此時(shí)點(diǎn)M坐標(biāo)為(﹣1,3);②若,則,解得DM=1,此時(shí)點(diǎn)M坐標(biāo)為(﹣1,2);綜上,點(diǎn)M坐標(biāo)為(﹣1,3)或(﹣1,2).【點(diǎn)睛】本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了平移的性質(zhì)、翻折的性質(zhì)、二次函數(shù)的圖象和性質(zhì)、待定系數(shù)法求二次函數(shù)的解析式、等腰直角三角形的性質(zhì)、相似三角形的判定,證得∠ODM=∠BOD=135°是解題的關(guān)鍵.22、(1)y=(x>0);(2)S與t的函數(shù)關(guān)系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當(dāng)S=時(shí),對(duì)應(yīng)的t值為或6;(3)當(dāng)t=或或3時(shí),使△FBO為等腰三角形.【解析】
(1)由正方形OABC的面積為9,可得點(diǎn)B的坐標(biāo)為:(3,3),繼而可求得該反比例函數(shù)的解析式.
(2)由題意得P(t,),然后分別從當(dāng)點(diǎn)P1在點(diǎn)B的左側(cè)時(shí),S=t?(-3)=-3t+9與當(dāng)點(diǎn)P2在點(diǎn)B的右側(cè)時(shí),則S=(t-3)?=9-去分析求解即可求得答案;
(3)分別從OB=BF,OB=OF,OF=BF去分析求解即可求得答案.【詳解】解:(1)∵正方形OABC的面積為9,∴點(diǎn)B的坐標(biāo)為:(3,3),∵點(diǎn)B在反比例函數(shù)y=(k>0,x>0)的圖象上,∴3=,即k=9,∴該反比例函數(shù)的解析式為:y=y=(x>0);(2)根據(jù)題意得:P(t,),分兩種情況:①當(dāng)點(diǎn)P1在點(diǎn)B的左側(cè)時(shí),S=t?(﹣3)=﹣3t+9(0≤t≤3);若S=,則﹣3t+9=,解得:t=;②當(dāng)點(diǎn)P2在點(diǎn)B的右側(cè)時(shí),則S=(t﹣3)?=9﹣;若S=,則9﹣=,解得:t=6;∴S與t的函數(shù)關(guān)系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當(dāng)S=時(shí),對(duì)應(yīng)的t值為或6;(3)存在.若OB=BF=3,此時(shí)CF=BC=3,∴OF=6,∴6=,解得:t=;若OB=OF=3,則3=,解得:t=;若BF=OF,此時(shí)點(diǎn)F與C重合,t=3;∴當(dāng)t=或或3時(shí),使△FBO為等腰三角形.【點(diǎn)睛】此題考查反比例函數(shù)的性質(zhì)、待定系數(shù)法求函數(shù)的解析式以及等腰三角形的性質(zhì).此題難度較大,解題關(guān)鍵是注意掌握數(shù)形結(jié)合思想、分類討論思想與方程思想的應(yīng)用.23、(1),;(1),.【解析】
(1)由點(diǎn)A在一次函數(shù)圖象上,將A(-1,a)代入y=x+4,求出a的值,得到點(diǎn)A的坐標(biāo),再由點(diǎn)A的坐標(biāo)利用待定系數(shù)法求出反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點(diǎn)B坐標(biāo);
(1)作點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)A′,作點(diǎn)B作關(guān)于x軸的對(duì)稱點(diǎn)B′,連接A′B′,交x軸于點(diǎn)P,交y軸于點(diǎn)Q,連接PB、QA.利用待定系數(shù)法求出直線A′B′的解析式,進(jìn)而求出P、Q兩點(diǎn)坐標(biāo).【詳解】解:(1)把點(diǎn)A(-1,a)代入一次函數(shù)y=x+4,
得:a=-1+4,解得:a=3,
∴點(diǎn)A的坐標(biāo)為(-1,3).
把點(diǎn)A(-1,3)代入反比例函數(shù)y=,
得:k=-3,
∴反比例函數(shù)的表達(dá)式y(tǒng)=-.
聯(lián)立兩個(gè)函數(shù)關(guān)系式成方程組得:解得:或∴點(diǎn)B的坐標(biāo)為(-3,1).
故答案為3,(-3,1);(1)作點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)A′,作點(diǎn)B作關(guān)于x軸
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)校電取暖管理制度
- 學(xué)校舍安全管理制度
- 學(xué)生上安全管理制度
- 安保市衛(wèi)生管理制度
- 安全警示牌管理制度
- 安設(shè)部各項(xiàng)管理制度
- 定量包裝稱管理制度
- 實(shí)訓(xùn)室藥品管理制度
- 審稿及校對(duì)管理制度
- 客貨郵運(yùn)輸管理制度
- 特發(fā)性矮小病例分享
- 氣體吸收操作-吸收塔結(jié)構(gòu)認(rèn)知(化工單元操作課件)
- 第五章健康保障制度
- 2023年副主任醫(yī)師(副高)-中西醫(yī)結(jié)合內(nèi)科學(xué)(副高)考試參考題庫(kù)附帶答案
- 北京市海淀區(qū)八年級(jí)下學(xué)期期末考試語(yǔ)文試題
- DB5206T16-2018梵凈山茶葉加工場(chǎng)所基本條件
- 學(xué)習(xí)鄉(xiāng)村振興知識(shí)競(jìng)賽100題及答案
- 種植基地管理手冊(cè)
- 工業(yè)機(jī)器人操作與運(yùn)維考試中級(jí)理論知識(shí)模擬試題
- 帶貨主播直播腳本21篇
- 動(dòng)物園主題認(rèn)識(shí)數(shù)字1-5幼兒教育教學(xué)PPT課件(含完整內(nèi)容)
評(píng)論
0/150
提交評(píng)論