2023屆上海市周浦中學高三數學第一學期期末質量跟蹤監視試題含解析_第1頁
2023屆上海市周浦中學高三數學第一學期期末質量跟蹤監視試題含解析_第2頁
2023屆上海市周浦中學高三數學第一學期期末質量跟蹤監視試題含解析_第3頁
2023屆上海市周浦中學高三數學第一學期期末質量跟蹤監視試題含解析_第4頁
2023屆上海市周浦中學高三數學第一學期期末質量跟蹤監視試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的一條漸近線為,圓與相切于點,若的面積為,則雙曲線的離心率為()A. B. C. D.2.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.3.已知復數滿足:(為虛數單位),則()A. B. C. D.4.某歌手大賽進行電視直播,比賽現場有名特約嘉賓給每位參賽選手評分,場內外的觀眾可以通過網絡平臺給每位參賽選手評分.某選手參加比賽后,現場嘉賓的評分情況如下表,場內外共有數萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數為,場內外的觀眾評分的平均數為,所有嘉賓與場內外的觀眾評分的平均數為,則下列選項正確的是()A. B. C. D.5.已知若(1-ai)(3+2i)為純虛數,則a的值為()A. B. C. D.6.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.7.已知,函數在區間上恰有個極值點,則正實數的取值范圍為()A. B. C. D.8.已知復數,其中,,是虛數單位,則()A. B. C. D.9.如圖,正方體中,,,,分別為棱、、、的中點,則下列各直線中,不與平面平行的是()A.直線 B.直線 C.直線 D.直線10.設直線的方程為,圓的方程為,若直線被圓所截得的弦長為,則實數的取值為A.或11 B.或11 C. D.11.已知向量,是單位向量,若,則()A. B. C. D.12.已知雙曲線:的左、右兩個焦點分別為,,若存在點滿足,則該雙曲線的離心率為()A.2 B. C. D.5二、填空題:本題共4小題,每小題5分,共20分。13.假設10公里長跑,甲跑出優秀的概率為,乙跑出優秀的概率為,丙跑出優秀的概率為,則甲、乙、丙三人同時參加10公里長跑,剛好有2人跑出優秀的概率為________.14.給出下列等式:,,,…請從中歸納出第個等式:______.15.已知函數則______.16.若,則____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知橢圓的左頂點為,右焦點為,為橢圓上兩點,圓.(1)若軸,且滿足直線與圓相切,求圓的方程;(2)若圓的半徑為,點滿足,求直線被圓截得弦長的最大值.18.(12分)已知函數,.(1)求函數的極值;(2)當時,求證:.19.(12分)已知頂點是坐標原點的拋物線的焦點在軸正半軸上,圓心在直線上的圓與軸相切,且關于點對稱.(1)求和的標準方程;(2)過點的直線與交于,與交于,求證:.20.(12分)在平面直角坐標系中,已知橢圓的左、右頂點分別為、,焦距為2,直線與橢圓交于兩點(均異于橢圓的左、右頂點).當直線過橢圓的右焦點且垂直于軸時,四邊形的面積為6.(1)求橢圓的標準方程;(2)設直線的斜率分別為.①若,求證:直線過定點;②若直線過橢圓的右焦點,試判斷是否為定值,并說明理由.21.(12分)已知,且滿足,證明:.22.(10分)某單位準備購買三臺設備,型號分別為已知這三臺設備均使用同一種易耗品,提供設備的商家規定:可以在購買設備的同時購買該易耗品,每件易耗品的價格為100元,也可以在設備使用過程中,隨時單獨購買易耗品,每件易耗品的價格為200元.為了決策在購買設備時應購買的易耗品的件數.該單位調查了這三種型號的設備各60臺,調査每臺設備在一個月中使用的易耗品的件數,并得到統計表如下所示.每臺設備一個月中使用的易耗品的件數678型號A30300頻數型號B203010型號C04515將調查的每種型號的設備的頻率視為概率,各臺設備在易耗品的使用上相互獨立.(1)求該單位一個月中三臺設備使用的易耗品總數超過21件的概率;(2)以該單位一個月購買易耗品所需總費用的期望值為決策依據,該單位在購買設備時應同時購買20件還是21件易耗品?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點睛】本題考查了雙曲線的幾何性質,直線與圓相切的性質,離心率的求法,屬于中檔題.2、D【解析】

先根據三視圖還原幾何體是一個四棱錐,根據三視圖的數據,計算各棱的長度.【詳解】根據三視圖可知,幾何體是一個四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點睛】本題主要考查三視圖的應用,還考查了空間想象和運算求解的能力,屬于中檔題.3、A【解析】

利用復數的乘法、除法運算求出,再根據共軛復數的概念即可求解.【詳解】由,則,所以.故選:A【點睛】本題考查了復數的四則運算、共軛復數的概念,屬于基礎題.4、C【解析】

計算出、,進而可得出結論.【詳解】由表格中的數據可知,,由頻率分布直方圖可知,,則,由于場外有數萬名觀眾,所以,.故選:B.【點睛】本題考查平均數的大小比較,涉及平均數公式以及頻率分布直方圖中平均數的計算,考查計算能力,屬于基礎題.5、A【解析】

根據復數的乘法運算法則化簡可得,根據純虛數的概念可得結果.【詳解】由題可知原式為,該復數為純虛數,所以.故選:A【點睛】本題考查復數的運算和復數的分類,屬基礎題.6、A【解析】

由題意求得c與的值,結合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點睛】本題考查雙曲線的簡單性質,屬于基礎題.7、B【解析】

先利用向量數量積和三角恒等變換求出,函數在區間上恰有個極值點即為三個最值點,解出,,再建立不等式求出的范圍,進而求得的范圍.【詳解】解:令,解得對稱軸,,又函數在區間恰有個極值點,只需解得.故選:.【點睛】本題考查利用向量的數量積運算和三角恒等變換與三角函數性質的綜合問題.(1)利用三角恒等變換及輔助角公式把三角函數關系式化成或的形式;(2)根據自變量的范圍確定的范圍,根據相應的正弦曲線或余弦曲線求值域或最值或參數范圍.8、D【解析】試題分析:由,得,則,故選D.考點:1、復數的運算;2、復數的模.9、C【解析】

充分利用正方體的幾何特征,利用線面平行的判定定理,根據判斷A的正誤.根據,判斷B的正誤.根據與相交,判斷C的正誤.根據,判斷D的正誤.【詳解】在正方體中,因為,所以平面,故A正確.因為,所以,所以平面故B正確.因為,所以平面,故D正確.因為與相交,所以與平面相交,故C錯誤.故選:C【點睛】本題主要考查正方體的幾何特征,線面平行的判定定理,還考查了推理論證的能力,屬中檔題.10、A【解析】

圓的圓心坐標為(1,1),該圓心到直線的距離,結合弦長公式得,解得或,故選A.11、C【解析】

設,根據題意求出的值,代入向量夾角公式,即可得答案;【詳解】設,,是單位向量,,,,聯立方程解得:或當時,;當時,;綜上所述:.故選:C.【點睛】本題考查向量的模、夾角計算,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意的兩種情況.12、B【解析】

利用雙曲線的定義和條件中的比例關系可求.【詳解】.選B.【點睛】本題主要考查雙曲線的定義及離心率,離心率求解時,一般是把已知條件,轉化為a,b,c的關系式.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

分跑出優秀的人為:甲、乙和甲、丙和乙、丙三種情況分別計算再求和即可.【詳解】剛好有2人跑出優秀有三種情況:其一是只有甲、乙兩人跑出優秀的概率為;其二是只有甲、丙兩人跑出優秀的概率為;其三是只有乙、丙兩人跑出優秀的概率為,三種情況相加得.即剛好有2人跑出優秀的概率為.故答案為:【點睛】本題主要考查了分類方法求解事件概率的問題,屬于基礎題.14、【解析】

通過已知的三個等式,找出規律,歸納出第個等式即可.【詳解】解:因為:,,,等式的右邊系數是2,且角是等比數列,公比為,則角滿足:第個等式中的角,所以;故答案為:.【點睛】本題主要考查歸納推理,注意已知表達式的特征是解題的關鍵,屬于中檔題.15、【解析】

先由解析式求得(2),再求(2).【詳解】(2),,所以(2),故答案為:【點睛】本題考查對數、指數的運算性質,分段函數求值關鍵是“對號入座”,屬于容易題.16、【解析】

由,得出,根據兩角和與差的正弦公式和余弦公式化簡,再利用齊次式即可求出結果.【詳解】因為,所以,所以.故答案為:.【點睛】本題考查三角函數化簡求值,利用二倍角正切公式、兩角和與差的正弦公式和余弦公式,以及運用齊次式求值,屬于對公式的考查以及對計算能力的考查.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】試題分析:(1)確定圓的方程,就是確定半徑的值,因為直線與圓相切,所以先確定直線方程,即確定點坐標:因為軸,所以,根據對稱性,可取,則直線的方程為,根據圓心到切線距離等于半徑得(2)根據垂徑定理,求直線被圓截得弦長的最大值,就是求圓心到直線的距離的最小值.設直線的方程為,則圓心到直線的距離,利用得,化簡得,利用直線方程與橢圓方程聯立方程組并結合韋達定理得,因此,當時,取最小值,取最大值為.試題解析:解:(1)因為橢圓的方程為,所以,.因為軸,所以,而直線與圓相切,根據對稱性,可取,則直線的方程為,即.由圓與直線相切,得,所以圓的方程為.(2)易知,圓的方程為.①當軸時,,所以,此時得直線被圓截得的弦長為.②當與軸不垂直時,設直線的方程為,,首先由,得,即,所以(*).聯立,消去,得,將代入(*)式,得.由于圓心到直線的距離為,所以直線被圓截得的弦長為,故當時,有最大值為.綜上,因為,所以直線被圓截得的弦長的最大值為.考點:直線與圓位置關系18、(1)的極小值為,無極大值.(2)見解析.【解析】

(1)對求導,確定函數單調性,得到函數極值.(2)構造函數,證明恒成立,得到,,得證.【詳解】(1)由題意知,,令,得,令,得.則在上單調遞減,在上單調遞增,所以的極小值為,無極大值.(2)當時,要證,即證.令,則,令,得,令,得,則在上單調遞減,在上單調遞增,所以當時,,所以,即.因為時,,所以當時,,所以當時,不等式成立.【點睛】本題考查了函數的單調性,極值,不等式的證明,構造函數是解題的關鍵.19、(1),;(2)證明見解析.【解析】分析:(1)設的標準方程為,由題意可設.結合中點坐標公式計算可得的標準方程為.半徑,則的標準方程為.(2)設的斜率為,則其方程為,由弦長公式可得.聯立直線與拋物線的方程有.設,利用韋達定理結合弦長公式可得.則.即.詳解:(1)設的標準方程為,則.已知在直線上,故可設.因為關于對稱,所以解得所以的標準方程為.因為與軸相切,故半徑,所以的標準方程為.(2)設的斜率為,那么其方程為,則到的距離,所以.由消去并整理得:.設,則,那么.所以.所以,即.點睛:(1)直線與拋物線的位置關系和直線與橢圓、雙曲線的位置關系類似,一般要用到根與系數的關系;(2)有關直線與拋物線的弦長問題,要注意直線是否過拋物線的焦點,若過拋物線的焦點,可直接使用公式|AB|=x1+x2+p,若不過焦點,則必須用一般弦長公式.20、(1);(2)①證明見解析;②【解析】

(1)由題意焦距為2,設點,代入橢圓,解得,從而四邊形的面積,由此能求出橢圓的標準方程.(2)①由題意,聯立直線與橢圓的方程,得,推導出,,,,由此猜想:直線過定點,從而能證明,,三點共線,直線過定點.②由題意設,,,,直線,代入橢圓標準方程:,得,推導出,,由此推導出(定值).【詳解】(1)由題意焦距為2,可設點,代入橢圓,得,解得,四邊形的面積,,,橢圓的標準方程為.(2)①由題意,聯立直線與橢圓的方程,得,,解得,從而,,,同理可得,,猜想:直線過定點,下證之:,,,,三點共線,直線過定點.②為定值,理由如下:由題意設,,,,直線,代入橢圓標準方程:,得,,,,(定值).【點睛】本題考查橢圓標準方程的求法,考查直線過定點的證明,考查兩直線的斜率的比值是否為定值的判斷與求法,考查橢圓、直線方程、韋達定理等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于中檔題.21、證明見解析【解析】

將化簡可得,由柯西不等式可得證明.【詳解】解:因為,,所以,又,所以,當且僅當時取等號.【點睛】本題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論