




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
德宏市重點中學2024屆中考數學仿真試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.的化簡結果為A.3 B. C. D.92.能說明命題“對于任何實數a,|a|>﹣a”是假命題的一個反例可以是()A.a=﹣2 B.a= C.a=1 D.a=3.如圖,正比例函數的圖像與反比例函數的圖象相交于A、B兩點,其中點A的橫坐標為2,當時,x的取值范圍是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>24.今年3月5日,十三屆全國人大一次會議在人民大會堂開幕,會議聽取了國務院總理李克強關于政府工作的報告,其中表示,五年來,人民生活持續改善,脫貧攻堅取得決定性進展,貧困人口減少6800多萬,易地扶貧搬遷830萬人,貧困發生率由10.2%下降到3.1%,將830萬用科學記數法表示為()A.83×105 B.0.83×106 C.8.3×106 D.8.3×1075.如圖,在四邊形ABCD中,對角線AC⊥BD,垂足為O,點E、F、G、H分別為邊AD、AB、BC、CD的中點.若AC=10,BD=6,則四邊形EFGH的面積為()A.20 B.15 C.30 D.606.如圖,有一張三角形紙片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿著箭頭方向剪開,可能得不到全等三角形紙片的是()A. B.C. D.7.如圖,把一個矩形紙片ABCD沿EF折疊后,點D、C分別落在D′、C′的位置,若∠EFB=65°,則∠AED′為()。A.70° B.65° C.50° D.25°8.不等式組1-x≤0,3x-6<0A. B. C. D.9.下列運算結果正確的是()A.3a﹣a=2B.(a﹣b)2=a2﹣b2C.a(a+b)=a2+bD.6ab2÷2ab=3b10.若順次連接四邊形各邊中點所得的四邊形是菱形,則四邊形一定是()A.矩形 B.菱形C.對角線互相垂直的四邊形 D.對角線相等的四邊形二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,當扇形AOB的半徑為2時,陰影部分的面積為__________.12.計算:____.13.點C在射線AB上,若AB=3,BC=2,則AC為_____.14.將數軸按如圖所示從某一點開始折出一個等邊三角形ABC,設點A表示的數為x﹣3,點B表示的數為2x+1,點C表示的數為﹣4,若將△ABC向右滾動,則x的值等于_____,數字2012對應的點將與△ABC的頂點_____重合.15.如圖,在矩形ABCD中,E是AD邊的中點,,垂足為點F,連接DF,分析下列四個結論:∽;;;其中正確的結論有______.16.化簡二次根式的正確結果是_____.17.如圖,已知圓錐的底面⊙O的直徑BC=6,高OA=4,則該圓錐的側面展開圖的面積為.三、解答題(共7小題,滿分69分)18.(10分)為了掌握我市中考模擬數學試題的命題質量與難度系數,命題教師赴我市某地選取一個水平相當的初三年級進行調研,命題教師將隨機抽取的部分學生成績(得分為整數,滿分為160分)分為5組:第一組85~100;第二組100~115;第三組115~130;第四組130~145;第五組145~160,統計后得到如圖1和如圖2所示的頻數分布直方圖(每組含最小值不含最大值)和扇形統計圖,觀察圖形的信息,回答下列問題:(1)本次調查共隨機抽取了該年級多少名學生?并將頻數分布直方圖補充完整;(2)若將得分轉化為等級,規定:得分低于100分評為“D”,100~130分評為“C”,130~145分評為“B”,145~160分評為“A”,那么該年級1600名學生中,考試成績評為“B”的學生大約有多少名?(3)如果第一組有兩名女生和兩名男生,第五組只有一名是男生,針對考試成績情況,命題教師決定從第一組、第五組分別隨機選出一名同學談談做題的感想,請你用列表或畫樹狀圖的方法求出所選兩名學生剛好是一名女生和一名男生的概率.19.(5分)如圖,在平面直角坐標系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設運動時間為t秒.(1)求拋物線的解析式.(2)在圖①中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當一個點到達終點時,另一個點隨之停止運動.當t為何值時,△PCQ為直角三角形?(3)在圖②中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當t為何值時,△ACQ的面積最大?最大值是多少?20.(8分)解不等式組:,并把解集在數軸上表示出來.21.(10分)如圖,⊙O是Rt△ABC的外接圓,∠C=90°,tanB=,過點B的直線l是⊙O的切線,點D是直線l上一點,過點D作DE⊥CB交CB延長線于點E,連接AD,交⊙O于點F,連接BF、CD交于點G.(1)求證:△ACB∽△BED;(2)當AD⊥AC時,求的值;(3)若CD平分∠ACB,AC=2,連接CF,求線段CF的長.22.(10分)對于平面直角坐標系xOy中的任意兩點M,N,給出如下定義:點M與點N的“折線距離”為:.例如:若點M(-1,1),點N(2,-2),則點M與點N的“折線距離”為:.根據以上定義,解決下列問題:已知點P(3,-2).①若點A(-2,-1),則d(P,A)=;②若點B(b,2),且d(P,B)=5,則b=;③已知點C(m,n)是直線上的一個動點,且d(P,C)<3,求m的取值范圍.⊙F的半徑為1,圓心F的坐標為(0,t),若⊙F上存在點E,使d(E,O)=2,直接寫出t的取值范圍.23.(12分)我市某中學藝術節期間,向全校學生征集書畫作品.九年級美術王老師從全年級14個班中隨機抽取了4個班,對征集到的作品的數量進行了分析統計,制作了如下兩幅不完整的統計圖.王老師采取的調查方式是(填“普查”或“抽樣調查”),王老師所調查的4個班征集到作品共件,其中b班征集到作品件,請把圖2補充完整;王老師所調查的四個班平均每個班征集作品多少件?請估計全年級共征集到作品多少件?如果全年級參展作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生.現在要在其中抽兩人去參加學校總結表彰座談會,請直接寫出恰好抽中一男一女的概率.24.(14分)某商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數與用150元購進乙種玩具的件數相同.求每件甲種、乙種玩具的進價分別是多少元?商場計劃購進甲、乙兩種玩具共48件,其中甲種玩具的件數少于乙種玩具的件數,商場決定此次進貨的總資金不超過1000元,求商場共有幾種進貨方案?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】試題分析:根據二次根式的計算化簡可得:.故選A.考點:二次根式的化簡2、A【解析】
將各選項中所給a的值代入命題“對于任意實數a,”中驗證即可作出判斷.【詳解】(1)當時,,此時,∴當時,能說明命題“對于任意實數a,”是假命題,故可以選A;(2)當時,,此時,∴當時,不能說明命題“對于任意實數a,”是假命題,故不能B;(3)當時,,此時,∴當時,不能說明命題“對于任意實數a,”是假命題,故不能C;(4)當時,,此時,∴當時,不能說明命題“對于任意實數a,”是假命題,故不能D;故選A.【點睛】熟知“通過舉反例說明一個命題是假命題的方法和求一個數的絕對值及相反數的方法”是解答本題的關鍵.3、D【解析】
先根據反比例函數與正比例函數的性質求出B點坐標,再由函數圖象即可得出結論.【詳解】解:∵反比例函數與正比例函數的圖象均關于原點對稱,
∴A、B兩點關于原點對稱,
∵點A的橫坐標為1,∴點B的橫坐標為-1,
∵由函數圖象可知,當-1<x<0或x>1時函數y1=k1x的圖象在的上方,
∴當y1>y1時,x的取值范圍是-1<x<0或x>1.
故選:D.【點睛】本題考查的是反比例函數與一次函數的交點問題,能根據數形結合求出y1>y1時x的取值范圍是解答此題的關鍵.4、C【解析】
科學記數法,是指把一個大于10(或者小于1)的整數記為a×10n的形式(其中1≤|a|<10|)的記數法.【詳解】830萬=8300000=8.3×106.故選C【點睛】本題考核知識點:科學記數法.解題關鍵點:理解科學記數法的意義.5、B【解析】
有一個角是直角的平行四邊形是矩形.利用中位線定理可得出四邊形EFGH是矩形,根據矩形的面積公式解答即可.【詳解】∵點E、F分別為四邊形ABCD的邊AD、AB的中點,∴EF∥BD,且EF=BD=1.同理求得EH∥AC∥GF,且EH=GF=AC=5,又∵AC⊥BD,∴EF∥GH,FG∥HE且EF⊥FG.四邊形EFGH是矩形.∴四邊形EFGH的面積=EF?EH=1×5=2,即四邊形EFGH的面積是2.故選B.【點睛】本題考查的是中點四邊形.解題時,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一個角是直角的平行四邊形是矩形;(2)有三個角是直角的四邊形是矩形;(1)對角線互相平分且相等的四邊形是矩形.6、C【解析】
根據全等三角形的判定定理進行判斷.【詳解】解:A、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;B、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;C、如圖1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其對應邊應該是BE和CF,而已知給的是BD=FC=3,所以不能判定兩個小三角形全等,故本選項符合題意;D、如圖2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定兩個小三角形全等,故本選項不符合題意;由于本題選擇可能得不到全等三角形紙片的圖形,故選C.【點睛】本題考查了全等三角形的判定,注意三角形邊和角的對應關系是關鍵.7、C【解析】
首先根據AD∥BC,求出∠FED的度數,然后根據軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等,則可知∠DEF=∠FED′,最后求得∠AED′的大小.【詳解】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折疊的性質知,∠DEF=∠FED′=65°,∴∠AED′=180°-2∠FED=50°,故選:C.【點睛】此題考查了長方形的性質與折疊的性質.此題比較簡單,解題的關鍵是注意數形結合思想的應用.8、D【解析】試題分析:1-x≤0①3x-6<0②,由①得:x≥1,由②得:x<2,在數軸上表示不等式的解集是:,故選D.考點:1.在數軸上表示不等式的解集;2.解一元一次不等式組.9、D【解析】
各項計算得到結果,即可作出判斷.【詳解】解:A、原式=2a,不符合題意;
B、原式=a2-2ab+b2,不符合題意;
C、原式=a2+ab,不符合題意;D、原式=3b,符合題意;
故選D【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.10、C【解析】【分析】如圖,根據三角形的中位線定理得到EH∥FG,EH=FG,EF=BD,則可得四邊形EFGH是平行四邊形,若平行四邊形EFGH是菱形,則可有EF=EH,由此即可得到答案.【點睛】如圖,∵E,F,G,H分別是邊AD,DC,CB,AB的中點,∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,∴EH∥FG,EH=FG,∴四邊形EFGH是平行四邊形,假設AC=BD,∵EH=AC,EF=BD,則EF=EH,∴平行四邊形EFGH是菱形,即只有具備AC=BD即可推出四邊形是菱形,故選D.【點睛】本題考查了中點四邊形,涉及到菱形的判定,三角形的中位線定理,平行四邊形的判定等知識,熟練掌握和靈活運用相關性質進行推理是解此題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、π﹣1【解析】
根據勾股定理可求OC的長,根據題意可得出陰影部分的面積=扇形BOC的面積-三角形ODC的面積,依此列式計算即可求解.【詳解】連接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,∴∠COD=45°,∴OC=CD=1,∴CD=OD=1,∴陰影部分的面積=扇形BOC的面積﹣三角形ODC的面積=﹣×11=π﹣1.故答案為π﹣1.【點睛】本題考查正方形的性質和扇形面積的計算,解題關鍵是得到扇形半徑的長度.12、5.【解析】試題分析:根據絕對值意義,正數的絕對值是它本身,負數的絕對值是它的相反數,0的絕對值是0,所以-5的絕對值是5.故答案為5.考點:絕對值計算.13、2或2.【解析】解:本題有兩種情形:(2)當點C在線段AB上時,如圖,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=2;(2)當點C在線段AB的延長線上時,如圖,∵AB=3,BC=2,∴AC=AB+BC=3+2=2.故答案為2或2.點睛:在未畫圖類問題中,正確畫圖很重要,本題滲透了分類討論的思想,體現了思維的嚴密性,在今后解決類似的問題時,要防止漏解.14、﹣1C.【解析】∵將數軸按如圖所示從某一點開始折出一個等邊三角形ABC,設點A表示的數為x﹣1,點B表示的數為2x+1,點C表示的數為﹣4,∴﹣4﹣(2x+1)=2x+1﹣(x﹣1);∴﹣1x=9,x=﹣1.故A表示的數為:x﹣1=﹣1﹣1=﹣6,點B表示的數為:2x+1=2×(﹣1)+1=﹣5,即等邊三角形ABC邊長為1,數字2012對應的點與﹣4的距離為:2012+4=2016,∵2016÷1=672,C從出發到2012點滾動672周,∴數字2012對應的點將與△ABC的頂點C重合.故答案為﹣1,C.點睛:此題主要考查了等邊三角形的性質,實數與數軸,一元一次方程等知識,本題將數與式的考查有機地融入“圖形與幾何”中,滲透“數形結合思想”、“方程思想”等,也是一道較優秀的操作活動型問題.15、【解析】
①證明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②由AD∥BC,推出△AEF∽△CBF,得到,由AE=AD=BC,得到,即CF=2AF;③作DM∥EB交BC于M,交AC于N,證明DM垂直平分CF,即可證明;④設AE=a,AB=b,則AD=2a,根據△BAE∽△ADC,得到,即b=a,可得tan∠CAD=.【詳解】如圖,過D作DM∥BE交AC于N,∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于點F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,即CF=2AF,∴CF=2AF,故②正確;作DM∥EB交BC于M,交AC于N,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正確;設AE=a,AB=b,則AD=2a,由△BAE∽△ADC,∴,即b=a,∴tan∠CAD=,故④錯誤;故答案為:①②③.【點睛】本題主要考查了相似三角形的判定和性質,矩形的性質,圖形面積的計算以及解直角三角形的綜合應用,正確的作出輔助線構造平行四邊形是解題的關鍵.16、﹣a【解析】,..17、15π.【解析】試題分析:∵OB=BC=3,OA=4,由勾股定理,AB=5,側面展開圖的面積為:×6π×5=15π.故答案為15π.考點:圓錐的計算.三、解答題(共7小題,滿分69分)18、(1)50(2)420(3)P=【解析】試題分析:(1)首先根據題意得:本次調查共隨機抽取了該年級學生數為:20÷40%=50(名);則可求得第五組人數為:50﹣4﹣8﹣20﹣14=4(名);即可補全統計圖;(2)由題意可求得130~145分所占比例,進而求出答案;(3)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與所選兩名學生剛好是一名女生和一名男生的情況,再利用概率公式求解即可求得答案.試題解析:(1)根據題意得:本次調查共隨機抽取了該年級學生數為:20÷40%=50(名);則第五組人數為:50﹣4﹣8﹣20﹣14=4(名);如圖:(2)根據題意得:考試成績評為“B”的學生大約有×1600=448(名),答:考試成績評為“B”的學生大約有448名;(3)畫樹狀圖得:∵共有16種等可能的結果,所選兩名學生剛好是一名女生和一名男生的有8種情況,∴所選兩名學生剛好是一名女生和一名男生的概率為:=.考點:1、樹狀圖法與列表法求概率的知識,2、直方圖與扇形統計圖的知識視頻19、(1)y=﹣x2+2x+3;(2)當t=或t=時,△PCQ為直角三角形;(3)當t=2時,△ACQ的面積最大,最大值是1.【解析】
(1)根據拋物線的對稱軸與矩形的性質可得點A的坐標,根據待定系數法可得拋物線的解析式;(2)先根據勾股定理可得CE,再分兩種情況:當∠QPC=90°時;當∠PQC=90°時;討論可得△PCQ為直角三角形時t的值;(3)根據待定系數法可得直線AC的解析式,根據S△ACQ=S△AFQ+S△CPQ可得S△ACQ==﹣(t﹣2)2+1,依此即可求解.【詳解】解:(1)∵拋物線的對稱軸為x=1,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4),點A在DE上,∴點A坐標為(1,4),設拋物線的解析式為y=a(x﹣1)2+4,把C(3,0)代入拋物線的解析式,可得a(3﹣1)2+4=0,解得a=﹣1.故拋物線的解析式為y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)依題意有:OC=3,OE=4,∴CE===5,當∠QPC=90°時,∵cos∠QPC=,∴,解得t=;當∠PQC=90°時,∵cos∠QCP=,∴,解得t=.∴當t=或t=時,△PCQ為直角三角形;(3)∵A(1,4),C(3,0),設直線AC的解析式為y=kx+b,則有:,解得.故直線AC的解析式為y=﹣2x+2.∵P(1,4﹣t),將y=4﹣t代入y=﹣2x+2中,得x=1+,∴Q點的橫坐標為1+,將x=1+代入y=﹣(x﹣1)2+4中,得y=4﹣.∴Q點的縱坐標為4﹣,∴QF=(4﹣)﹣(4﹣t)=t﹣,∴S△ACQ=S△AFQ+S△CFQ=FQ?AG+FQ?DG,=FQ(AG+DG),=FQ?AD,=×2(t﹣),=﹣(t﹣2)2+1,∴當t=2時,△ACQ的面積最大,最大值是1.【點睛】考查了二次函數綜合題,涉及的知識點有:拋物線的對稱軸,矩形的性質,待定系數法求拋物線的解析式,待定系數法求直線的解析式,勾股定理,銳角三角函數,三角形面積,二次函數的最值,方程思想以及分類思想的運用.20、則不等式組的解集是﹣1<x≤3,不等式組的解集在數軸上表示見解析.【解析】
先求出不等式組中每一個不等式的解集,再求出它們的公共部分就是不等式組的解集.【詳解】解不等式①得:x>﹣1,解不等式②得:x≤3,則不等式組的解集是:﹣1<x≤3,不等式組的解集在數軸上表示為:.【點睛】本題考查了解一元一次不等式組,熟知確定解集的方法“同大取大,同小取小,大小小大中間找,大大小小無處找”是解題的關鍵.也考查了在數軸上表示不等式組的解集.21、(1)詳見解析;(2);(3).【解析】
(1)只要證明∠ACB=∠E,∠ABC=∠BDE即可;(2)首先證明BE:DE:BC=1:2:4,由△GCB∽△GDF,可得=;(3)想辦法證明AB垂直平分CF即可解決問題.【詳解】(1)證明:如圖1中,∵DE⊥CB,∴∠ACB=∠E=90°,∵BD是切線,∴AB⊥BD,∴∠ABD=90°,∴∠ABC+∠DBE=90°,∠BDE+∠DBE=90°,∴∠ABC=∠BDE,∴△ACB∽△BED;(2)解:如圖2中,∵△ACB∽△BED;四邊形ACED是矩形,∴BE:DE:BC=1:2:4,∵DF∥BC,∴△GCB∽△GDF,∴=;(3)解:如圖3中,∵tan∠ABC==,AC=2,∴BC=4,BE=4,DE=8,AB=2,BD=4,易證△DBE≌△DBF,可得BF=4=BC,∴AC=AF=2,∴CF⊥AB,設CF交AB于H,則CF=2CH=2×.【點睛】本題考查相似三角形的判定和性質、圓周角定理、切線的性質、解直角三角形、線段的垂直平分線的判定和性質等知識,解題的關鍵是靈活運用所學知識解決問題,所以中考常考題型.22、(1)①6,②2或4,③1<m<4;(2)或.【解析】
(1)①根據“折線距離”的定義直接列式計算;②根據“折線距離”的定義列出方程,求解即可;③根據“折線距離”的定義列出式子,可知其幾何意義是數軸上表示數m的點到表示數3的點的距離與到表示數2的點的距離之和小于3.(2)由題意可知,根據圖像易
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年 消防安全管理員中級考試練習試題附答案
- 2025年中國暖手鼠標墊行業發展運行現狀及投資潛力預測報告
- 2025年 河南全科醫生特設崗位計劃招聘考試筆試試題附答案
- 2025年 赤峰巴林左旗招聘社區工作者考試試題附答案
- 2021-2026年中國多用途車市場供需現狀及投資戰略研究報告
- 請求批準的請示報告
- 中國挖機行業市場深度分析及投資規劃建議報告
- 2025年河北省石家莊市中考歷史試卷(含答案)
- 電動車噴漆培訓課件
- 醋酸鄰氨基對行業深度研究分析報告(2024-2030版)
- 數據一致性保障的方法探討
- 十八項核心制度培訓課件
- 中醫養生秋季篇課件
- 《面部美容穴位》課件
- DB32-T 419-2010海蜜二號厚皮甜瓜栽培技術規程
- 《電磁場的邊界條》課件
- 2025年福建泉州水務集團招聘筆試參考題庫含答案解析
- 中國電信外呼培訓
- 利用新媒體技術加強農村科普教育的傳播力度
- 剪映專業版教學課件
- 醫學裝備科管理人員崗位職責工作職責和任務
評論
0/150
提交評論