




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北京市東城區2024年中考數學適應性模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是一個由5個相同的正方體組成的立體圖形,它的主視圖是()A. B.C. D.2.給出下列各數式,①②③④計算結果為負數的有()A.1個 B.2個 C.3個 D.4個3.不等式組的解集在數軸上可表示為()A. B. C. D.4.在一個不透明的袋子里裝有兩個黃球和一個白球,它們除顏色外都相同,隨機從中摸出一個球,記下顏色后放回袋子中,充分搖勻后,再隨機摸出一個球.兩次都摸到黃球的概率是()A. B. C. D.5.函數中,x的取值范圍是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣26.下列計算正確的是()A.a2+a2=a4 B.a5?a2=a7 C.(a2)3=a5 D.2a2﹣a2=27.的倒數是()A. B.3 C. D.8.某車間需加工一批零件,車間20名工人每天加工零件數如表所示:每天加工零件數45678人數36542每天加工零件數的中位數和眾數為()A.6,5 B.6,6 C.5,5 D.5,69.如圖,在△ABC中,AB=AC=10,CB=16,分別以AB、AC為直徑作半圓,則圖中陰影部分面積是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.10.一個幾何體的三視圖如圖所示,該幾何體是A.直三棱柱 B.長方體 C.圓錐 D.立方體11.實數a,b,c在數軸上對應點的位置大致如圖所示,O為原點,則下列關系式正確的是()A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c12.若分式的值為0,則x的值為()A.-2 B.0 C.2 D.±2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算:(3+1)(3﹣1)=.14.A.如果一個正多邊形的一個外角是45°,那么這個正多邊形對角線的條數一共有_____條.B.用計算器計算:?tan63°27′≈_____(精確到0.01).15.已知線段AB=2cm,點C在線段AB上,且AC2=BC·AB,則AC的長___________cm.16.如圖,正方形ABCD的邊長為6,E,F是對角線BD上的兩個動點,且EF=,連接CE,CF,則△CEF周長的最小值為_____.17.如圖,小強和小華共同站在路燈下,小強的身高EF=1.8m,小華的身高MN=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是___.18.股市規定:股票每天的漲、跌幅均不超過10%,即當漲了原價的10%后,便不能再漲,叫做漲停;當跌了原價的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后兩天時間又漲回到原價,若這兩天此股票股價的平均增長率為x,則x滿足的方程是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.(1)求拋物線的解析式;(2)當點P運動到什么位置時,△PAB的面積有最大值?(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.20.(6分)如圖,直線y=2x+6與反比例函數y=(k>0)的圖像交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數的圖像于點M,交AB于點N,連接BM.求m的值和反比例函數的表達式;直線y=n沿y軸方向平移,當n為何值時,△BMN的面積最大?21.(6分)如圖1,在四邊形ABCD中,AB=AD.∠B+∠ADC=180°,點E,F分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數量關系.圖1圖2圖3(1)思路梳理將△ABE繞點A逆時針旋轉至△ADG,使AB與AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即點F,D,G三點共線.易證△AFG,故EF,BE,DF之間的數量關系為;(2)類比引申如圖2,在圖1的條件下,若點E,F由原來的位置分別變到四邊形ABCD的邊CB,DC的延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數量關系,并給出證明.(3)聯想拓展如圖3,在△ABC中,∠BAC=90°,AB=AC,點D,E均在邊BC上,且∠DAE=45°.若BD=1,EC=2,則DE的長為.22.(8分)在同一副撲克牌中取出6張撲克牌,分別是黑桃2、4、6,紅心6、7、8.將撲克牌背面朝上分別放在甲、乙兩張桌面上,先從甲桌面上任意摸出一張黑桃,再從乙桌面上任意摸出一張紅心.表示出所有可能出現的結果;小黃和小石做游戲,制定了兩個游戲規則:規則1:若兩次摸出的撲克牌中,至少有一張是“6”,小黃贏;否則,小石贏.規則2:若摸出的紅心牌點數是黑桃牌點數的整數倍時,小黃贏;否則,小石贏.小黃想要在游戲中獲勝,會選擇哪一條規則,并說明理由.23.(8分)學校實施新課程改革以來,學生的學習能力有了很大提高.王老師為進一步了解本班學生自主學習、合作交流的現狀,對該班部分學生進行調查,把調查結果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調查結果繪制成兩幅不完整的統計圖(如圖1,2).請根據統計圖解答下列問題:本次調查中,王老師一共調查了名學生;將條形統計圖補充完整;為了共同進步,王老師從被調查的A類和D類學生中分別選取一名學生進行“兵教兵”互助學習,請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.24.(10分)觀察規律并填空.______(用含n的代數式表示,n是正整數,且n≥2)25.(10分)﹣(﹣1)2018+﹣()﹣126.(12分)如圖所示,A、B兩地之間有一條河,原來從A地到B地需要經過橋DC,沿折線A→D→C→B到達,現在新建了橋EF(EF=DC),可直接沿直線AB從A地到達B地,已知BC=12km,∠A=45°,∠B=30°,橋DC和AB平行.(1)求橋DC與直線AB的距離;(2)現在從A地到達B地可比原來少走多少路程?(以上兩問中的結果均精確到0.1km,參考數據:≈1.14,≈1.73)27.(12分)計算:|-2|+2﹣1﹣cos61°﹣(1﹣)1.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
畫出從正面看到的圖形即可得到它的主視圖.【詳解】這個幾何體的主視圖為:故選:A.【點睛】本題考查了簡單組合體的三視圖:畫簡單組合體的三視圖要循序漸進,通過仔細觀察和想象,再畫它的三視圖.2、B【解析】∵①;②;③;④;∴上述各式中計算結果為負數的有2個.故選B.3、A【解析】
先求出每個不等式的解集,再求出不等式組的解集即可.【詳解】解:∵不等式①得:x>1,解不等式②得:x≤2,∴不等式組的解集為1<x≤2,在數軸上表示為:,故選A.【點睛】本題考查了解一元一次不等式組和在數軸上表示不等式組的解集,能根據不等式的解集找出不等式組的解集是解此題的關鍵.4、A【解析】
首先根據題意畫出樹狀圖,由樹狀圖求得所有等可能的結果與兩次都摸到黃球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【詳解】畫樹狀圖如下:由樹狀圖可知,共有9種等可能結果,其中兩次都摸到黃球的有4種結果,∴兩次都摸到黃球的概率為,故選A.【點睛】此題考查的是用列表法或樹狀圖法求概率的知識.注意畫樹狀圖與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.5、B【解析】要使有意義,所以x+1≥0且x+1≠0,
解得x>-1.
故選B.6、B【解析】
根據整式的加減乘除乘方運算法則逐一運算即可。【詳解】A.,故A選項錯誤。B.,故B選項正確。C.,故C選項錯誤。D.,故D選項錯誤。故答案選B.【點睛】本題考查整式加減乘除運算法則,只需熟記法則與公式即可。7、A【解析】
解:的倒數是.故選A.【點睛】本題考查倒數,掌握概念正確計算是解題關鍵.8、A【解析】
根據眾數、中位數的定義分別進行解答即可.【詳解】由表知數據5出現了6次,次數最多,所以眾數為5;因為共有20個數據,所以中位數為第10、11個數據的平均數,即中位數為=6,故選A.【點睛】本題考查了眾數和中位數的定義.用到的知識點:一組數據中出現次數最多的數據叫做這組數據的眾數.將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.9、B【解析】
設以AB、AC為直徑作半圓交BC于D點,連AD,如圖,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴陰影部分面積=半圓AC的面積+半圓AB的面積﹣△ABC的面積,=π?52﹣?16?6,=25π﹣1.故選B.10、A【解析】
根據三視圖的形狀可判斷幾何體的形狀.【詳解】觀察三視圖可知,該幾何體是直三棱柱.故選A.本題考查了幾何體的三視圖和結構特征,根據三視圖的形狀可判斷幾何體的形狀是關鍵.11、A【解析】
根據數軸上點的位置確定出a,b,c的范圍,判斷即可.【詳解】由數軸上點的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.故選A.【點睛】考查了實數與數軸,弄清數軸上點表示的數是解本題的關鍵.12、C【解析】由題意可知:,解得:x=2,故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】
根據平方差公式計算即可.【詳解】原式=(3)2-12=18-1=1故答案為1.【點睛】本題考查的是二次根式的混合運算,掌握平方差公式、二次根式的性質是解題的關鍵.14、205.1【解析】
A、先根據多邊形外角和為360°且各外角相等求得邊數,再根據多邊形對角線條數的計算公式計算可得;B、利用計算器計算可得.【詳解】A、根據題意,此正多邊形的邊數為360°÷45°=8,則這個正多邊形對角線的條數一共有=20,故答案為20;B、?tan63°27′≈2.646×2.001≈5.1,故答案為5.1.【點睛】本題主要考查計算器-三角函數,解題的關鍵是掌握多邊形的內角與外角、對角線計算公式及計算器的使用.15、【解析】
設AC=x,則BC=2-x,根據AC2=BC·AB列方程求解即可.【詳解】解:設AC=x,則BC=2-x,根據AC2=BC·AB可得x2=2(2-x),解得:x=或(舍去).故答案為.【點睛】本題考查了黃金分割的應用,關鍵是明確黃金分割所涉及的線段的比.16、2+4【解析】
如圖作CH∥BD,使得CH=EF=2,連接AH交BD由F,則△CEF的周長最小.【詳解】如圖作CH∥BD,使得CH=EF=2,連接AH交BD由F,則△CEF的周長最小.∵CH=EF,CH∥EF,∴四邊形EFHC是平行四邊形,∴EC=FH,∵FA=FC,∴EC+CF=FH+AF=AH,∵四邊形ABCD是正方形,∴AC⊥BD,∵CH∥DB,∴AC⊥CH,∴∠ACH=90°,在Rt△ACH中,AH==4,∴△EFC的周長的最小值=2+4,故答案為:2+4.【點睛】本題考查軸對稱﹣最短問題,正方形的性質、勾股定理、平行四邊形的判定和性質等知識,解題的關鍵是學會利用軸對稱解決最短問題.17、4m【解析】
設路燈的高度為x(m),根據題意可得△BEF∽△BAD,再利用相似三角形的對應邊正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因為兩人相距4.7m,可得到關于x的一元一次方程,然后求解方程即可.【詳解】設路燈的高度為x(m),∵EF∥AD,∴△BEF∽△BAD,∴EFAD即1.8x解得:DF=x﹣1.8,∵MN∥AD,∴△CMN∽△CAD,∴MNAD即1.5x解得:DN=x﹣1.5,∵兩人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路燈AD的高度是4m.18、.【解析】
股票一次跌停就跌到原來價格的90%,再從90%的基礎上漲到原來的價格,且漲幅只能≤10%,設這兩天此股票股價的平均增長率為x,每天相對于前一天就上漲到1+x,由此列出方程解答即可.【詳解】設這兩天此股票股價的平均增長率為x,由題意得(1﹣10%)(1+x)2=1.故答案為:(1﹣10%)(1+x)2=1.【點睛】本題主要考查了由實際問題抽象出一元二次方程,關鍵是掌握平均變化率的方法,若設變化前的量為,變化后的量為,平均變化率為,則經過兩次變化后的數量關系為三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)拋物線解析式為y=﹣x2+2x+6;(2)當t=3時,△PAB的面積有最大值;(3)點P(4,6).【解析】
(1)利用待定系數法進行求解即可得;(2)作PM⊥OB與點M,交AB于點N,作AG⊥PM,先求出直線AB解析式為y=﹣x+6,設P(t,﹣t2+2t+6),則N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?OB列出關于t的函數表達式,利用二次函數的性質求解可得;(3)由PH⊥OB知DH∥AO,據此由OA=OB=6得∠BDH=∠BAO=45°,結合∠DPE=90°知若△PDE為等腰直角三角形,則∠EDP=45°,從而得出點E與點A重合,求出y=6時x的值即可得出答案.【詳解】(1)∵拋物線過點B(6,0)、C(﹣2,0),∴設拋物線解析式為y=a(x﹣6)(x+2),將點A(0,6)代入,得:﹣12a=6,解得:a=﹣,所以拋物線解析式為y=﹣(x﹣6)(x+2)=﹣x2+2x+6;(2)如圖1,過點P作PM⊥OB與點M,交AB于點N,作AG⊥PM于點G,設直線AB解析式為y=kx+b,將點A(0,6)、B(6,0)代入,得:,解得:,則直線AB解析式為y=﹣x+6,設P(t,﹣t2+2t+6)其中0<t<6,則N(t,﹣t+6),∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,∴S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?(AG+BM)=PN?OB=×(﹣t2+3t)×6=﹣t2+9t=﹣(t﹣3)2+,∴當t=3時,△PAB的面積有最大值;(3)△PDE為等腰直角三角形,
則PE=PD,
點P(m,-m2+2m+6),
函數的對稱軸為:x=2,則點E的橫坐標為:4-m,
則PE=|2m-4|,
即-m2+2m+6+m-6=|2m-4|,
解得:m=4或-2或5+或5-(舍去-2和5+)
故點P的坐標為:(4,6)或(5-,3-5).【點睛】本題考查了二次函數的綜合問題,涉及到待定系數法、二次函數的最值、等腰直角三角形的判定與性質等,熟練掌握和靈活運用待定系數法求函數解析式、二次函數的性質、等腰直角三角形的判定與性質等是解題的關鍵.20、(1)m=8,反比例函數的表達式為y=;(2)當n=3時,△BMN的面積最大.【解析】
(1)求出點A的坐標,利用待定系數法即可解決問題;(2)構造二次函數,利用二次函數的性質即可解決問題.【詳解】解:(1)∵直線y=2x+6經過點A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函數經過點A(1,8),∴8=,∴k=8,∴反比例函數的解析式為y=.(2)由題意,點M,N的坐標為M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3時,△BMN的面積最大.21、(1)△AFE.EF=BE+DF.(2)BF=DF-BE,理由見解析;(3)【解析】試題分析:(1)先根據旋轉得:計算即點共線,再根據SAS證明△AFE≌△AFG,得EF=FG,可得結論EF=DF+DG=DF+AE;
(2)如圖2,同理作輔助線:把△ABE繞點A逆時針旋轉至△ADG,證明△EAF≌△GAF,得EF=FG,所以EF=DF?DG=DF?BE;
(3)如圖3,同理作輔助線:把△ABD繞點A逆時針旋轉至△ACG,證明△AED≌△AEG,得,先由勾股定理求的長,從而得結論.試題解析:(1)思路梳理:如圖1,把△ABE繞點A逆時針旋轉至△ADG,可使AB與AD重合,即AB=AD,由旋轉得:∠ADG=∠A=,BE=DG,∠DAG=∠BAE,AE=AG,∴∠FDG=∠ADF+∠ADG=+=,即點F.D.
G共線,∵四邊形ABCD為矩形,∴∠BAD=,∵∠EAF=,∴∴∴在△AFE和△AFG中,∵∴△AFE≌△AFG(SAS),∴EF=FG,∴EF=DF+DG=DF+AE;故答案為:△AFE,EF=DF+AE;(2)類比引申:如圖2,EF=DF?BE,理由是:把△ABE繞點A逆時針旋轉至△ADG,可使AB與AD重合,則G在DC上,由旋轉得:BE=DG,∠DAG=∠BAE,AE=AG,∵∠BAD=,∴∠BAE+∠BAG=,∵∠EAF=,∴∠FAG=?=,∴∠EAF=∠FAG=,在△EAF和△GAF中,∵∴△EAF≌△GAF(SAS),∴EF=FG,∴EF=DF?DG=DF?BE;(3)聯想拓展:如圖3,把△ABD繞點A逆時針旋轉至△ACG,可使AB與AC重合,連接EG,由旋轉得:AD=AG,∠BAD=∠CAG,BD=CG,∵∠BAC=,AB=AC,∴∠B=∠ACB=,∴∠ACG=∠B=,∴∠BCG=∠ACB+∠ACG=+=,∵EC=2,CG=BD=1,由勾股定理得:∵∠BAD=∠CAG,∠BAC=,∴∠DAG=,∵∠BAD+∠EAC=,∴∠CAG+∠EAC==∠EAG,∴∠DAE=,∴∠DAE=∠EAG=,∵AE=AE,∴△AED≌△AEG,∴22、(1):,,,,,,,,共9種;(2)小黃要在游戲中獲勝,小黃會選擇規則1,理由見解析【解析】
(1)利用列舉法,列舉所有的可能情況即可;
(2)分別求出至少有一張是“6”和摸出的紅心牌點數是黑桃牌點數的整數倍時的概率,進行選擇即可.【詳解】(1)所有可能出現的結果如下:,,,,,,,,共9種;(1)摸牌的所有可能結果總數為9,至少有一張是6的有5種可能,∴在規劃1中,(小黃贏);紅心牌點數是黑桃牌點數的整倍數有4種可能,∴在規劃2中,(小黃贏).∵,∴小黃要在游戲中獲勝,小黃會選擇規則1.【點睛】考查列舉法以及概率的計算,明確概率的意義是解題的關鍵,概率等于所求情況數與總情況數的比.23、(1)20;(2)作圖見試題解析;(3).【解析】
(1)由A類的學生數以及所占的百分比即可求得答案;(2)先求出C類的女生數、D類的男生數,繼而可補全條形統計圖;(3)首先根據題意列出表格,再利用表格求得所有等可能的結果與恰好選中一名男生和一名女生的情況,繼而求得答案.【詳解】(1)根據題意得:王老師一共調查學生:(2+1)÷15%=20(名);故答案為20;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年 消防安全管理員中級考試練習試題附答案
- 2025年中國暖手鼠標墊行業發展運行現狀及投資潛力預測報告
- 2025年 河南全科醫生特設崗位計劃招聘考試筆試試題附答案
- 2025年 赤峰巴林左旗招聘社區工作者考試試題附答案
- 2021-2026年中國多用途車市場供需現狀及投資戰略研究報告
- 請求批準的請示報告
- 中國挖機行業市場深度分析及投資規劃建議報告
- 2025年河北省石家莊市中考歷史試卷(含答案)
- 電動車噴漆培訓課件
- 醋酸鄰氨基對行業深度研究分析報告(2024-2030版)
- 國家開放大學《思想道德與法治》社會實踐報告范文二
- 電子信息工程專業應用能力測試卷
- GB/T 45698-2025物業服務客戶滿意度測評
- 2025至2030年中國金剛石繩鋸行業市場運行格局及前景戰略分析報告
- 工程保險課件
- 宣講政策課件
- 無痛胃鏡操作急救知識要點
- 護理質控中心建設與運營
- 金融公司干股協議書
- 2025益陽事業單位筆試真題
- 委托加工稻米協議書
評論
0/150
提交評論