2024屆湖南省長沙市湖南師大附中教育集團重點中學中考數學考前最后一卷含解析_第1頁
2024屆湖南省長沙市湖南師大附中教育集團重點中學中考數學考前最后一卷含解析_第2頁
2024屆湖南省長沙市湖南師大附中教育集團重點中學中考數學考前最后一卷含解析_第3頁
2024屆湖南省長沙市湖南師大附中教育集團重點中學中考數學考前最后一卷含解析_第4頁
2024屆湖南省長沙市湖南師大附中教育集團重點中學中考數學考前最后一卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆湖南省長沙市湖南師大附中教育集團重點中學中考數學考前最后一卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是()A.CB=CD B.∠BCA=∠DCAC.∠BAC=∠DAC D.∠B=∠D=90°2.A種飲料比B種飲料單價少1元,小峰買了2瓶A種飲料和3瓶B種飲料,一共花了13元,如果設B種飲料單價為x元/瓶,那么下面所列方程正確的是()A.2(x1)+3x=13 B.2(x+1)+3x=13C.2x+3(x+1)=13 D.2x+3(x1)=133.一元二次方程x2﹣3x+1=0的根的情況()A.有兩個相等的實數根 B.有兩個不相等的實數根C.沒有實數根 D.以上答案都不對4.如圖,把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,若∠2=40°,則圖中∠1的度數為()A.115° B.120° C.130° D.140°5.定義:一個自然數,右邊的數字總比左邊的數字小,我們稱之為“下滑數”(如:32,641,8531等).現從兩位數中任取一個,恰好是“下滑數”的概率為()A. B. C. D.6.在中,,,,則的值是()A. B. C. D.7.如圖所示,點E在AC的延長線上,下列條件中能判斷AB∥CD的是()A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°8.如圖,在平面直角坐標系xOy中,A(2,0),B(0,2),⊙C的圓心為點C(﹣1,0),半徑為1.若D是⊙C上的一個動點,線段DA與y軸交于E點,則△ABE面積的最小值是()A.2B.83C.2+29.如圖,數軸A、B上兩點分別對應實數a、b,則下列結論正確的是()A.a+b>0 B.ab>0 C.1a+10.關于x的不等式組無解,那么m的取值范圍為()A.m≤-1 B.m<-1 C.-1<m≤0 D.-1≤m<011.點A(a,3)與點B(4,b)關于y軸對稱,則(a+b)2017的值為()A.0 B.﹣1 C.1 D.7201712.如圖,點A、B、C在圓O上,若∠OBC=40°,則∠A的度數為()A.40° B.45° C.50° D.55°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若是關于的完全平方式,則__________.14.如圖,矩形ABCD的對角線BD經過坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數y=的圖象上,若點A的坐標為(﹣2,﹣2),則k的值為_____.15.如圖,在平面直角坐標系中,已知點A(﹣4,0)、B(0,3),對△AOB連續作旋轉變換依次得到三角形(1)、(2)、(3)、(4)、…,則第(5)個三角形的直角頂點的坐標是_____,第(2018)個三角形的直角頂點的坐標是______.16.觀察圖形,根據圖形面積的關系,不需要連其他的線,便可以得到一個用來分解因式的公式,這個公式是________________17.計算_______.18.已知關于X的一元二次方程有實數根,則m的取值范圍是____________________三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,BC的延長線于過點A的直線相交于點E,且∠B=∠EAC.(1)求證:AE是⊙O的切線;(2)過點C作CG⊥AD,垂足為F,與AB交于點G,若AG?AB=36,tanB=,求DF的值20.(6分)如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=1.(1)填空:拋物線的頂點坐標為(用含m的代數式表示);(2)求△ABC的面積(用含a的代數式表示);(3)若△ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.21.(6分)先化簡,后求值:,其中.22.(8分)如圖,一個長方形運動場被分隔成A、B、A、B、C共5個區,A區是邊長為am的正方形,C區是邊長為bm的正方形.列式表示每個B區長方形場地的周長,并將式子化簡;列式表示整個長方形運動場的周長,并將式子化簡;如果a=20,b=10,求整個長方形運動場的面積.23.(8分)如圖,在平面直角坐標系xOy中,一次函數y=kx+b(k≠0)的圖象與反比例函數y=(n≠0)的圖象交于第二、四象限內的A、B兩點,與x軸交于點C,點B坐標為(m,﹣1),AD⊥x軸,且AD=3,tan∠AOD=.求該反比例函數和一次函數的解析式;求△AOB的面積;點E是x軸上一點,且△AOE是等腰三角形,請直接寫出所有符合條件的E點的坐標.24.(10分)如圖,PB與⊙O相切于點B,過點B作OP的垂線BA,垂足為C,交⊙O于點A,連結PA,AO,AO的延長線交⊙O于點E,與PB的延長線交于點D.(1)求證:PA是⊙O的切線;(2)若tan∠BAD=,且OC=4,求BD的長.25.(10分)如圖,某中學數學課外學習小組想測量教學樓的高度,組員小方在處仰望教學樓頂端處,測得,小方接著向教學樓方向前進到處,測得,已知,,.(1)求教學樓的高度;(2)求的值.26.(12分)我市某中學決定在八年級陽光體育“大課間”活動中開設A:實心球,B:立定跳遠,C:跳繩,D:跑步四種活動項目.為了了解學生對四種項目的喜歡情況,隨機抽取了部分學生進行調查,并將調查結果繪制成如圖①②的統計圖.請結合圖中的信息解答下列問題:(1)在這項調查中,共調查了多少名學生?(2)將兩個統計圖補充完整;(3)若調查到喜歡“立定跳遠”的5名學生中有3名男生,2名女生.現從這5名學生中任意抽取2名學生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學生的概率.27.(12分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑作⊙O交AB于點D,取AC的中點E,邊結DE,OE、OD,求證:DE是⊙O的切線.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

由圖形可知AC=AC,結合全等三角形的判定方法逐項判斷即可.【詳解】解:在△ABC和△ADC中∵AB=AD,AC=AC,∴當CB=CD時,滿足SSS,可證明△ABC≌△ACD,故A可以;當∠BCA=∠DCA時,滿足SSA,不能證明△ABC≌△ACD,故B不可以;當∠BAC=∠DAC時,滿足SAS,可證明△ABC≌△ACD,故C可以;當∠B=∠D=90°時,滿足HL,可證明△ABC≌△ACD,故D可以;故選:B.【點睛】本題考查了全等三角形的判定方法,熟練掌握判定定理是解題關鍵.2、A【解析】

要列方程,首先要根據題意找出題中存在的等量關系,由題意可得到:買A飲料的錢+買B飲料的錢=總印數1元,明確了等量關系再列方程就不那么難了.【詳解】設B種飲料單價為x元/瓶,則A種飲料單價為(x-1)元/瓶,根據小峰買了2瓶A種飲料和3瓶B種飲料,一共花了1元,可得方程為:2(x-1)+3x=1.故選A.【點睛】列方程題的關鍵是找出題中存在的等量關系,此題的等量關系為買A中飲料的錢+買B中飲料的錢=一共花的錢1元.3、B【解析】

首先確定a=1,b=-3,c=1,然后求出△=b2-4ac的值,進而作出判斷.【詳解】∵a=1,b=-3,c=1,∴△=(-3)2-4×1×1=5>0,∴一元二次方程x2-3x+1=0兩個不相等的實數根;故選B.【點睛】此題考查了根的判別式,一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數;(3)△<0?方程沒有實數根.4、A【解析】解:∵把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故選A.5、A【解析】分析:根據概率的求法,找準兩點:①全部情況的總數:根據題意得知這樣的兩位數共有90個;

②符合條件的情況數目:從總數中找出符合條件的數共有45個;二者的比值就是其發生的概率.詳解:兩位數共有90個,下滑數有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45個,

概率為.

故選A.點睛:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.6、D【解析】

首先根據勾股定理求得AC的長,然后利用正弦函數的定義即可求解.【詳解】∵∠C=90°,BC=1,AB=4,

∴,∴,故選:D.【點睛】本題考查了三角函數的定義,求銳角的三角函數值的方法:利用銳角三角函數的定義,轉化成直角三角形的邊長的比.7、C【解析】

由平行線的判定定理可證得,選項A,B,D能證得AC∥BD,只有選項C能證得AB∥CD.注意掌握排除法在選擇題中的應用.【詳解】A.∵∠3=∠A,本選項不能判斷AB∥CD,故A錯誤;B.∵∠D=∠DCE,∴AC∥BD.本選項不能判斷AB∥CD,故B錯誤;C.∵∠1=∠2,∴AB∥CD.本選項能判斷AB∥CD,故C正確;D.∵∠D+∠ACD=180°,∴AC∥BD.故本選項不能判斷AB∥CD,故D錯誤.故選:C.【點睛】考查平行線的判定,掌握平行線的判定定理是解題的關鍵.8、C【解析】當⊙C與AD相切時,△ABE面積最大,連接CD,則∠CDA=90°,∵A(2,0),B(0,2),⊙C的圓心為點C(-1,0),半徑為1,∴CD=1,AC=2+1=3,∴AD=AC2-CD∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴OA即222=∴BE=OB+OE=2+2∴S△ABE=1BE?OA=12×(2+22故答案為C.9、C【解析】

本題要先觀察a,b在數軸上的位置,得b<-1<0<a<1,然后對四個選項逐一分析.【詳解】A、因為b<-1<0<a<1,所以|b|>|a|,所以a+b<0,故選項A錯誤;B、因為b<0<a,所以ab<0,故選項B錯誤;C、因為b<-1<0<a<1,所以1a+1D、因為b<-1<0<a<1,所以1a-1故選C.【點睛】本題考查了實數與數軸的對應關系,數軸上右邊的數總是大于左邊的數.10、A【解析】【分析】先求出每一個不等式的解集,然后再根據不等式組無解得到有關m的不等式,就可以求出m的取值范圍了.【詳解】,解不等式①得:x<m,解不等式②得:x>-1,由于原不等式組無解,所以m≤-1,故選A.【點睛】本題考查了一元一次不等式組無解問題,熟知一元一次不等式組解集的確定方法“大大取大,小小取小,大小小大中間找,大大小小無處找”是解題的關鍵.11、B【解析】

根據關于y軸對稱的點的縱坐標相等,橫坐標互為相反數,可得答案.【詳解】解:由題意,得a=-4,b=1.(a+b)2017=(-1)2017=-1,故選B.【點睛】本題考查了關于y軸對稱的點的坐標,利用關于y軸對稱的點的縱坐標相等,橫坐標互為相反數得出a,b是解題關鍵.12、C【解析】

根據等腰三角形的性質和三角形內角和定理求得∠BOC=100°,再利用圓周角定理得到∠A=12【詳解】∵OB=OC,

∴∠OBC=∠OCB.

又∠OBC=40°,

∴∠OBC=∠OCB=40°,

∴∠BOC=180°-2×40°=100°,

∴∠A=12【點睛】考查了圓周角定理.在同圓或等圓中,一條弧所對的圓周角是它所對的圓心角的一半.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1或-1【解析】【分析】直接利用完全平方公式的定義得出2(m-3)=±8,進而求出答案.詳解:∵x2+2(m-3)x+16是關于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案為-1或1.點睛:此題主要考查了完全平方公式,正確掌握完全平方公式的基本形式是解題關鍵.14、1【解析】試題分析:設點C的坐標為(x,y),則B(-2,y)D(x,-2),設BD的函數解析式為y=mx,則y=-2m,x=-,∴k=xy=(-2m)·(-)=1.考點:求反比例函數解析式.15、(16,)(8068,)【解析】

利用勾股定理列式求出AB的長,再根據圖形寫出第(5)個三角形的直角頂點的坐標即可;觀察圖形不難發現,每3個三角形為一個循環組依次循環,用2018除以3,根據商和余數的情況確定出第(2018)個三角形的直角頂點到原點O的距離,然后寫出坐標即可.【詳解】∵點A(﹣4,0),B(0,3),∴OA=4,OB=3,∴AB==5,∴第(2)個三角形的直角頂點的坐標是(4,);∵5÷3=1余2,∴第(5)個三角形的直角頂點的坐標是(16,),∵2018÷3=672余2,∴第(2018)個三角形是第672組的第二個直角三角形,其直角頂點與第672組的第二個直角三角形頂點重合,∴第(2018)個三角形的直角頂點的坐標是(8068,).故答案為:(16,);(8068,)【點睛】本題考查了坐標與圖形變化-旋轉,解題的關鍵是根據題意找出每3個三角形為一個循環組依次循環.16、【解析】由圖形可得:17、【解析】

根據同底數冪的乘法法則計算即可.【詳解】故答案是:【點睛】本題考查了同底數冪的乘法,熟練掌握同底數冪的乘法運算法則是解題的關鍵.18、m≤3且m≠2【解析】試題解析:∵一元二次方程有實數根∴4-4(m-2)≥0且m-2≠0解得:m≤3且m≠2.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)4【解析】分析:(1)欲證明AE是⊙O切線,只要證明OA⊥AE即可;(2)由△ACD∽△CFD,可得,想辦法求出CD、AD即可解決問題.詳解:(1)證明:連接CD.∵∠B=∠D,AD是直徑,∴∠ACD=90°,∠D+∠1=90°,∠B+∠1=90°,∵∠B=∠EAC,∴∠EAC+∠1=90°,∴OA⊥AE,∴AE是⊙O的切線.(2)∵CG⊥AD.OA⊥AE,∴CG∥AE,∴∠2=∠3,∵∠2=∠B,∴∠3=∠B,∵∠CAG=∠CAB,∴△ABC∽△ACG,∴,∴AC2=AG?AB=36,∴AC=6,∵tanD=tanB=,在Rt△ACD中,tanD==CD==6,AD==6,∵∠D=∠D,∠ACD=∠CFD=90°,∴△ACD∽△CFD,∴,∴DF=4,點睛:本題考查切線的性質、圓周角定理、垂徑定理、相似三角形的判定和性質、解直角三角形等知識,解題關鍵是靈活運用所學知識解決問題,屬于中考常考題型.20、(1)(m,2m﹣2);(2)S△ABC=﹣;(3)m的值為或10+2.【解析】分析:(1)利用配方法將二次函數解析式由一般式變形為頂點式,此題得解;(2)過點C作直線AB的垂線,交線段AB的延長線于點D,由AB∥x軸且AB=1,可得出點B的坐標為(m+2,1a+2m?2),設BD=t,則點C的坐標為(m+2+t,1a+2m?2?t),利用二次函數圖象上點的坐標特征可得出關于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面積公式即可得出S△ABC的值;(3)由(2)的結論結合S△ABC=2可求出a值,分三種情況考慮:①當m>2m?2,即m<2時,x=2m?2時y取最大值,利用二次函數圖象上點的坐標特征可得出關于m的一元二次方程,解之可求出m的值;②當2m?2≤m≤2m?2,即2≤m≤2時,x=m時y取最大值,利用二次函數圖象上點的坐標特征可得出關于m的一元一次方程,解之可求出m的值;③當m<2m?2,即m>2時,x=2m?2時y取最大值,利用二次函數圖象上點的坐標特征可得出關于m的一元一次方程,解之可求出m的值.綜上即可得出結論.詳解:(1)∵y=ax2﹣2amx+am2+2m﹣2=a(x﹣m)2+2m﹣2,∴拋物線的頂點坐標為(m,2m﹣2),故答案為(m,2m﹣2);(2)過點C作直線AB的垂線,交線段AB的延長線于點D,如圖所示,∵AB∥x軸,且AB=1,∴點B的坐標為(m+2,1a+2m﹣2),∵∠ABC=132°,∴設BD=t,則CD=t,∴點C的坐標為(m+2+t,1a+2m﹣2﹣t),∵點C在拋物線y=a(x﹣m)2+2m﹣2上,∴1a+2m﹣2﹣t=a(2+t)2+2m﹣2,整理,得:at2+(1a+1)t=0,解得:t1=0(舍去),t2=﹣,∴S△ABC=AB?CD=﹣;(3)∵△ABC的面積為2,∴﹣=2,解得:a=﹣,∴拋物線的解析式為y=﹣(x﹣m)2+2m﹣2.分三種情況考慮:①當m>2m﹣2,即m<2時,有﹣(2m﹣2﹣m)2+2m﹣2=2,整理,得:m2﹣11m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②當2m﹣2≤m≤2m﹣2,即2≤m≤2時,有2m﹣2=2,解得:m=;③當m<2m﹣2,即m>2時,有﹣(2m﹣2﹣m)2+2m﹣2=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m1=10+2.綜上所述:m的值為或10+2.點睛:本題考查了二次函數解析式的三種形式、二次函數圖象上點的坐標特征、等腰直角三角形、解一元二次方程以及二次函數的最值,解題的關鍵是:(1)利用配方法將二次函數解析式變形為頂點式;(2)利用等腰直角三角形的性質找出點C的坐標;(3)分m<2、2≤m≤2及m>2三種情況考慮.21、,【解析】分析:先把分值分母因式分解后約分,再進行通分得到原式=,然后把x的值代入計算即可.詳解:原式=?﹣1=﹣=當x=+1時,原式==.點睛:本題考查了分式的化簡求值:先把分式化簡后,再把分式中未知數對應的值代入求出分式的值.22、(1)(2)(3)【解析】試題分析:(1)結合圖形可得矩形B的長可表示為:a+b,寬可表示為:a-b,繼而可表示出周長;(2)根據題意表示出整個矩形的長和寬,再求周長即可;(3)先表示出整個矩形的面積,然后代入計算即可.試題解析:(1)矩形B的長可表示為:a+b,寬可表示為:a-b,∴每個B區矩形場地的周長為:2(a+b+a-b)=4a;(2)整個矩形的長為a+a+b=2a+b,寬為:a+a-b=2a-b,∴整個矩形的周長為:2(2a+b+2a-b)=8a;(3)矩形的面積為:S=(2a+b)(2a-b)=,把,代入得,S=4×202-102=4×400-100=1500.點睛:本題考查了列代數式的知識,屬于基礎題,解答本題的關鍵是結合圖形表示出各矩形的長和寬.23、(1)y=﹣,y=﹣x+2;(2)6;(3)當點E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)時,△AOE是等腰三角形.【解析】

(1)利用待定系數法,即可得到反比例函數和一次函數的解析式;(2)利用一次函數解析式求得C(4,0),即OC=4,即可得出△AOB的面積=×4×3=6;(3)分類討論:當AO為等腰三角形腰與底時,求出點E坐標即可.【詳解】(1)如圖,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考點:n=3×(﹣2)=﹣6,所以反比例函數解析式為:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分別代入y=kx+b,得:,解得:,所以一次函數解析式為:y=﹣x+2;(2)當y=0時,﹣x+2=0,解得:x=4,則C(4,0),所以;(3)當OE3=OE2=AO=,即E2(﹣,0),E3(,0);當OA=AE1=時,得到OE1=2OD=4,即E1(﹣4,0);當AE4=OE4時,由A(﹣2,3),O(0,0),得到直線AO解析式為y=﹣x,中點坐標為(﹣1,1.5),令y=0,得到y=﹣,即E4(﹣,0),綜上,當點E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)時,△AOE是等腰三角形.【點睛】本題考查了反比例函數與一次函數的交點問題,熟練掌握各自的性質是解題的關鍵.24、(1)證明見解析;(2)【解析】試題分析:(1)連接OB,由SSS證明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;(2)連接BE,證明△PAC∽△AOC,證出OC是△ABE的中位線,由三角形中位線定理得出BE=2OC,由△DBE∽△DPO可求出.試題解析:(1)連結OB,則OA=OB.如圖1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分線,∴PA=PB.在△PAO和△PB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論