




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數z=(1+2i)(1+ai)(a∈R),若z∈R,則實數a=()A. B. C.2 D.﹣22.若(),,則()A.0或2 B.0 C.1或2 D.13.秦九韶是我國南宋時期的數學家,普州(現四川省安岳縣)人,他在所著的《數書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入的值為2,則輸出的值為A. B. C. D.4.在中,內角的平分線交邊于點,,,,則的面積是()A. B. C. D.5.設復數滿足,則在復平面內的對應點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.若平面向量,滿足,則的最大值為()A. B. C. D.7.函數()的圖像可以是()A. B.C. D.8.地球上的風能取之不盡,用之不竭.風能是淸潔能源,也是可再生能源.世界各國致力于發展風力發電,近10年來,全球風力發電累計裝機容量連年攀升,中國更是發展迅猛,2014年累計裝機容量就突破了,達到,中國的風力發電技術也日臻成熟,在全球范圍的能源升級換代行動中體現出大國的擔當與決心.以下是近10年全球風力發電累計裝機容量與中國新增裝機容量圖.根據所給信息,正確的統計結論是()A.截止到2015年中國累計裝機容量達到峰值B.10年來全球新增裝機容量連年攀升C.10年來中國新增裝機容量平均超過D.截止到2015年中國累計裝機容量在全球累計裝機容量中占比超過9.“十二平均律”是通用的音律體系,明代朱載堉最早用數學方法計算出半音比例,為這個理論的發展做出了重要貢獻.十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于.若第一個單音的頻率為f,則第八個單音的頻率為A. B.C. D.10.若為純虛數,則z=()A. B.6i C. D.2011.如圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是()A.2017年第一季度GDP增速由高到低排位第5的是浙江省.B.與去年同期相比,2017年第一季度的GDP總量實現了增長.C.2017年第一季度GDP總量和增速由高到低排位均居同一位的省只有1個D.去年同期河南省的GDP總量不超過4000億元.12.已知甲、乙兩人獨立出行,各租用共享單車一次(假定費用只可能為、、元).甲、乙租車費用為元的概率分別是、,甲、乙租車費用為元的概率分別是、,則甲、乙兩人所扣租車費用相同的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知單位向量的夾角為,則=_________.14.若實數,滿足,則的最小值為__________.15.設、、、、是表面積為的球的球面上五點,四邊形為正方形,則四棱錐體積的最大值為__________.16.已知數列是各項均為正數的等比數列,若,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設橢圓,直線經過點,直線經過點,直線直線,且直線分別與橢圓相交于兩點和兩點.(Ⅰ)若分別為橢圓的左、右焦點,且直線軸,求四邊形的面積;(Ⅱ)若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;(Ⅲ)在(Ⅱ)的條件下,判斷四邊形能否為矩形,說明理由.18.(12分)已知矩陣,二階矩陣滿足.(1)求矩陣;(2)求矩陣的特征值.19.(12分)已知拋物線與直線.(1)求拋物線C上的點到直線l距離的最小值;(2)設點是直線l上的動點,是定點,過點P作拋物線C的兩條切線,切點為A,B,求證A,Q,B共線;并在時求點P坐標.20.(12分)已知拋物線,過點的直線交拋物線于兩點,坐標原點為,.(1)求拋物線的方程;(2)當以為直徑的圓與軸相切時,求直線的方程.21.(12分)在直角坐標系中,直線的參數方程為(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求和的直角坐標方程;(2)已知為曲線上的一個動點,求線段的中點到直線的最大距離.22.(10分)已知函數,其中為自然對數的底數.(1)若函數在區間上是單調函數,試求的取值范圍;(2)若函數在區間上恰有3個零點,且,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
化簡z=(1+2i)(1+ai)=,再根據z∈R求解.【詳解】因為z=(1+2i)(1+ai)=,又因為z∈R,所以,解得a=-2.故選:D【點睛】本題主要考查復數的運算及概念,還考查了運算求解的能力,屬于基礎題.2、A【解析】
利用復數的模的運算列方程,解方程求得的值.【詳解】由于(),,所以,解得或.故選:A【點睛】本小題主要考查復數模的運算,屬于基礎題.3、C【解析】
由題意,模擬程序的運行,依次寫出每次循環得到的,的值,當時,不滿足條件,跳出循環,輸出的值.【詳解】解:初始值,,程序運行過程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循環,輸出的值為其中①②①—②得.故選:.【點睛】本題主要考查了循環結構的程序框圖的應用,正確依次寫出每次循環得到,的值是解題的關鍵,屬于基礎題.4、B【解析】
利用正弦定理求出,可得出,然后利用余弦定理求出,進而求出,然后利用三角形的面積公式可計算出的面積.【詳解】為的角平分線,則.,則,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面積為.故選:B.【點睛】本題考查三角形面積的計算,涉及正弦定理和余弦定理以及三角形面積公式的應用,考查計算能力,屬于中等題.5、C【解析】
化簡得到,得到答案.【詳解】,故,對應點在第三象限.故選:.【點睛】本題考查了復數的化簡和對應象限,意在考查學生的計算能力.6、C【解析】
可根據題意把要求的向量重新組合成已知向量的表達,利用向量數量積的性質,化簡為三角函數最值.【詳解】由題意可得:,,,故選:C【點睛】本題主要考查根據已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達是本題的關鍵點.本題屬中檔題.7、B【解析】
根據,可排除,然后采用導數,判斷原函數的單調性,可得結果.【詳解】由題可知:,所以當時,,又,令,則令,則所以函數在單調遞減在單調遞增,故選:B【點睛】本題考查函數的圖像,可從以下指標進行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調性;(5)值域,屬基礎題.8、D【解析】
先列表分析近10年全球風力發電新增裝機容量,再結合數據研究單調性、平均值以及占比,即可作出選擇.【詳解】年份2009201020112012201320142015201620172018累計裝機容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增裝機容量39.140.645.135.851.863.854.953.551.4中國累計裝機裝機容量逐年遞增,A錯誤;全球新增裝機容量在2015年之后呈現下降趨勢,B錯誤;經計算,10年來中國新增裝機容量平均每年為,選項C錯誤;截止到2015年中國累計裝機容量,全球累計裝機容量,占比為,選項D正確.故選:D【點睛】本題考查條形圖,考查基本分析求解能力,屬基礎題.9、D【解析】分析:根據等比數列的定義可知每一個單音的頻率成等比數列,利用等比數列的相關性質可解.詳解:因為每一個單音與前一個單音頻率比為,所以,又,則故選D.點睛:此題考查等比數列的實際應用,解決本題的關鍵是能夠判斷單音成等比數列.等比數列的判斷方法主要有如下兩種:(1)定義法,若()或(),數列是等比數列;(2)等比中項公式法,若數列中,且(),則數列是等比數列.10、C【解析】
根據復數的乘法運算以及純虛數的概念,可得結果.【詳解】∵為純虛數,∴且得,此時故選:C.【點睛】本題考查復數的概念與運算,屬基礎題.11、C【解析】
利用圖表中的數據進行分析即可求解.【詳解】對于A選項:2017年第一季度5省的GDP增速由高到低排位分別是:江蘇、遼寧、山東、河南、浙江,故A正確;對于B選項:與去年同期相比,2017年第一季度5省的GDP均有不同的增長,所以其總量也實現了增長,故B正確;對于C選項:2017年第一季度GDP總量由高到低排位分別是:江蘇、山東、浙江、河南、遼寧,2017年第一季度5省的GDP增速由高到低排位分別是:江蘇、遼寧、山東、河南、浙江,均居同一位的省有2個,故C錯誤;對于D選項:去年同期河南省的GDP總量,故D正確.故選:C.【點睛】本題考查了圖表分析,學生的分析能力,推理能力,屬于基礎題.12、B【解析】
甲、乙兩人所扣租車費用相同即同為1元,或同為2元,或同為3元,由獨立事件的概率公式計算即得.【詳解】由題意甲、乙租車費用為3元的概率分別是,∴甲、乙兩人所扣租車費用相同的概率為.故選:B.【點睛】本題考查獨立性事件的概率.掌握獨立事件的概率乘法公式是解題基礎.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
因為單位向量的夾角為,所以,所以==.14、【解析】
由約束條件先畫出可行域,然后求目標函數的最小值.【詳解】由約束條件先畫出可行域,如圖所示,由,即,當平行線經過點時取到最小值,由可得,此時,所以的最小值為.故答案為.【點睛】本題考查了線性規劃的知識,解題的一般步驟為先畫出可行域,然后改寫目標函數,結合圖形求出最值,需要掌握解題方法.15、【解析】
根據球的表面積求得球的半徑,設球心到四棱錐底面的距離為,求得四棱錐的表達式,利用基本不等式求得體積的最大值.【詳解】由已知可得球的半徑,設球心到四棱錐底面的距離為,棱錐的高為,底面邊長為,的體積,當且僅當時等號成立.故答案為:【點睛】本小題主要考查球的表面積有關計算,考查球的內接四棱錐體積的最值的求法,屬于中檔題.16、40【解析】
設等比數列的公比為,根據,可得,因為,根據均值不等式,即可求得答案.【詳解】設等比數列的公比為,,,等比數列的各項為正數,,,當且僅當,即時,取得最小值.故答案為:.【點睛】本題主要考查了求數列值的最值問題,解題關鍵是掌握等比數列通項公式和靈活使用均值不等式,考查了分析能力和計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)不能,證明見解析【解析】
(Ⅰ)計算得到故,,,,計算得到面積.(Ⅱ)設為,聯立方程得到,計算,同理,根據得到,得到證明.(Ⅲ)設中點為,根據點差法得到,同理,故,得到結論.【詳解】(Ⅰ),,故,,,.故四邊形的面積為.(Ⅱ)設為,則,故,設,,故,,同理可得,,故,即,,故.(Ⅲ)設中點為,則,,相減得到,即,同理可得:的中點,滿足,故,故四邊形不能為矩形.【點睛】本題考查了橢圓內四邊形的面積,形狀,根據四邊形形狀求參數,意在考查學生的計算能力和綜合應用能力.18、(1)(2)特征值為或.【解析】
(1)先設矩陣,根據,按照運算規律,即可求出矩陣.(2)令矩陣的特征多項式等于,即可求出矩陣的特征值.【詳解】解:(1)設矩陣由題意,因為,所以,即所以,(2)矩陣的特征多項式,令,解得或,所以矩陣的特征值為1或.【點睛】本題主要考查矩陣的乘法和矩陣的特征值,考查學生的劃歸與轉化能力和運算求解能力.19、(1);(2)證明見解析,或【解析】
(1)根據點到直線的公式結合二次函數的性質即可求出;(2)設,,,,表示出直線,的方程,利用表示出,,即可求定點的坐標.【詳解】(1)設拋物線上點的坐標為,則,時取等號),則拋物線上的點到直線距離的最小值;(2)設,,,,,,直線,的方程為分別為,,由兩條直線都經過點點得,為方程的兩根,,直線的方程為,,,,,共線.又,,,解,,點,是直線上的動點,時,,時,,,或.【點睛】本題考查拋物線的方程的求法,考查直線方程的求法,考查直線過定點的解法,意在考查學生對這些知識的理解掌握水平和分析推理能力.20、(1);(2)或【解析】試題分析:本題主要考查拋物線的標準方程、直線與拋物線的相交問題、直線與圓相切問題等基礎知識,同時考查考生的分析問題解決問題的能力、轉化能力、運算求解能力以及數形結合思想.第一問,設出直線方程與拋物線方程聯立,利用韋達定理得到y1+y2,y1y2,,代入到中解出P的值;第二問,結合第一問的過程,利用兩種方法求出的長,聯立解出m的值,從而得到直線的方程.試題解析:(Ⅰ)設l:x=my-2,代入y2=2px,得y2-2pmy+4p=1.(*)設A(x1,y1),B(x2,y2),則y1+y2=2pm,y1y2=4p,則.因為,所以x1x2+y1y2=12,即4+4p=12,得p=2,拋物線的方程為y2=4x.…5分(Ⅱ)由(Ⅰ)(*)化為y2-4my+2=1.y1+y2=4m,y1y2=2.…6分設AB的中點為M,則|AB|=2xm=x1+x2=m(y1+y2)-4=4m2-4,①又,②由①②得(1+m2)(16m2-32)=(4m2-4)2,解得m2=3,.所以,直線l的方程為,或.…12分考點:拋物線的標準方程、直線與拋物線的相交問題、直線與圓相切問題.21、(1)..(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學校熱水房管理制度
- 學校要創新管理制度
- 學校預收費管理制度
- 寧河區資產管理制度
- 安全管理員管理制度
- 安裝加工棚管理制度
- 定制設計部管理制度
- 實行公司化管理制度
- 審批局安全管理制度
- 客房經營與管理制度
- 2025時政試題及答案(100題)
- 2024秋期國家開放大學本科《經濟學(本)》一平臺在線形考(形考任務1至6)試題及答案
- 合理應用喹諾酮類抗菌藥物專家共識精品課件
- 西北工業大學數電實驗報告二Quartus和Multisim
- GB∕T 41666.3-2022 地下無壓排水管網非開挖修復用塑料管道系統 第3部分:緊密貼合內襯法
- k受體激動劑在臨床中的應用
- 第四節-酸堿平衡失常的診治課件
- 在挫折中成長(課堂PPT)
- 國家學生體質健康標準登記卡高中樣表
- 通用焊接工藝規范
- 清創縫合術(課堂PPT)
評論
0/150
提交評論